Evaluation of Genetic Variability in Four Nigerian Locally-Adapted Chicken Populations Using Major Histocompatibility Complex-Linked LEI0258 Microsatellite Marker

Document Type : Original Paper


1 Animal Science and Fisheries Management, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun State, Nigeria

2 Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria

3 Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya

4 Department of Animal Breeding and Physiology, Federal University of Agriculture, Makurdi, Benue State, Nigeria

5 Centre for Tropical Livestock Genetics and Health (CTLGH) – ILRI, Nairobi Kenya


Major Histocompatibility Complex (MHC) is a group of genes that generally influence immune response in vertebrates, and it has been explored among different animal species in various countries. However, there is a paucity of information on its application in Nigerian locally-adapted chickens (NLAC). This research investigated genetic polymorphism, allele variability, and genetic relationships using LEI0258 major histocompatibility complex-linked microsatellite marker among four NLAC populations: Fulani × Yoruba ecotypes, FUNNAB Alpha × Noiler breeds. Blood samples were randomly collected from 50 mature birds in each population and DNA was extracted and subsequently subjected to PCR, Sanger sequencing, and bioinformatic analysis. There were two variable numbers of tandem repeats (VNTRs), with 90% of the alleles containing only one R13 and varying numbers of the R12 motifs that ranged from 1 to 19. Additional polymorphism was revealed by the presence of five SNPs and three indels in the upstream and downstream regions of LEI0258. A total of 48 alleles were observed with sizes ranging from 188 to 530 base pairs while the allele frequencies within the populations ranged from 1.9 to 29.2%. However, only 17 out of the 48 alleles had corresponding MHC-B haplotypes. Haplotypes B2, B12, and B21 found in this study had been reported to confer resistance to infectious poultry diseases especially avian influenza in locally adapted chickens. There were high allelic variability and genetic polymorphisms observed via the atypical LEI0258 microsatellite in describing the MHC-B region.


Addisu H, Kyallo M, Yohannes T, Sendeku W, Getu A, Dagnachew S, Dejen M, Wolde Y, Engdaw F, Kidane A, Dessie T, Getinet MT, Githae D & Roger P. 2020. Genetic diversity and population structure of indigenous chicken ecotypes (Gallus gallus domesticus) in Ethiopia using LEI0258 microsatellite. International Journal of Poultry Science, 19: 102-110. DOI: 10.3923/ijps.2020.102.110
Adebabay KB. 2018. Whole genome-based characterization of indigenous chicken populations in Ethiopia. PhD thesis. Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia. 496 Pages.
Adebambo AO, Mobegi VA, Mwacharo JM, Oladejo BM, Adewale RA, Ilori LO, Makanjuola BO, Afolayan        O, Bjørnstad G, Jianlin H & Hanotte O. 2010. Lack of phylogeographic structure in Nigerian village           chickens revealed by mitochondrial DNA D-loop sequence analysis. International Journal of Poultry             Science, 9(5), 503-507. DOI: 10.3923/ijps.2010.503.507
Ajayi FO. 2010. Nigerian indigenous chicken: A valuable genetic resource for meat and egg production. Asian Journal of Poultry Science, 4: 164-172. DOI: 10.3923/ajpsaj.2010.164.172
Ajibike AB, Adeleye OO, Ilori BM, Osinbowale DA, Adeniyi OA, Durosaro SO, Sanda AJ, Adebambo OA & Adebambo AO. 2017. Genetic diversity, phylogeographic structure and effect of selection at the mitochondrial hypervariable region of Nigerian chicken populations. Journal of Genetics, 96(2): 959-968. DOI: 10.1007/s12041-017-0860-1
Apuno AA, Mbap ST & Ibrahim T. 2011. Characterization of local chickens (Gallus gallus domesticus) in Shelleng and Song Local Government Areas of Adamawa State, Nigeria. Agriculture and Biology Journal of North America, 2(1): 6-14. DOI: 10.5251/abjna.2011.
Bacon LD, Hunter DB, Zhang HM, Brand K & Etches R. 2004. Retrospective evidence that the MHC (B haplotype) of chickens influences genetic resistance to attenuated infectious bronchitis vaccine strains in chickens. Avian Pathology, 33(6): 605–609. DOI: 10.1080/03079450400013147
Bacon LD. 1987. Influence of the major histocompatibility complex on disease resistance and productivity. Poultry Science, 66(5): 802–811. DOI: 10.3382/ps.0660802
Bacon LD, Witter RL, Crittenden LB, Fadly A & Motta J. 1981. B-haplotype influence on Marek’s disease, Rous sarcoma, and lymphoid leukosis virus-induced tumors in chickens. Poultry Science, 60(6): 1132–1139. DOI: 10.3382/ps.0601132
Blankert JJ, Albers GA, Briles WE, Ginkel MV, Groot AJ, Te Winkel GP, Tilanus MG & Van der Zijpp AJ. 1990. The effect of serologically defined major histocompatibility complex haplotypes on Marek’s disease resistance in commercially-bred White Leghorn chickens. Avian Diseases, 34(4): 818–823. DOI: 10.3389%2Ffimmu.2022.908305
Boonyanuwat K, Thummabutra S, Sookmanee N, Vatchavalkhu V & Siripholvat V. 2006. Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens. Animal Science Journal, 77(3): 285–289. DOI: 10.2307/1591368
Briles WE, Stone HA & Cole RK. 1977. Marek’s disease: Effects of B histocompatibility allo-alleles in resistant and susceptible chicken lines. Science, 195(4274): 193–195 DOI: 10.1126/science.831269
Chazara O, Chang CS, Bruneau N, Benabdeljelil K, Fotsa JC, Kayang BB, Loukou NG, Osei-Amponsah R, Yapi-Gnaore V, Youssao IA, Chen CF, Laan MP, Tixier-Boichard M & Bed’Hom B. 2013. Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region. Immunogenetics, 65: 447–459. DOI: 10.1007/s00251-013-0697-6
Collins WM, Briles WE, Zsigray RM, Dunlop WR, Corbett AC, Clark KK, Marks JL & McGrail TP. 1977. The B locus (MHC) in the chicken: Association with the fate of RSV induced tumors. Immunogenetics, 5(1): 333–343. DOI: 10.1007/BF01570490
Cotter PF, Taylor Jr. RL, & Abplanalp H. 1998. B-Complex Associated Immunity to Salmonella enteritidis Challenge in Congenic Chickens. Poultry Science, 77(12): 1846 –1851. DOI: 10.1093/ps/77.12.1846
Davison TF. 2003. The immunologists' debt to the chicken. British Poultry Science, 44(1): 6-21 DOI: 10.1080/0007166031000085364
Esmailnejad A, Nikbakht G & Badavam M. 2017. LEI0258 microsatellite variability and its association with humoral and cell mediated immune responses in broiler chickens. Molecular Immunology, 90: 22–26.  DOI: 10.1016/j.molimm.2017.06.027
Excoffier L & Lischer HEL 2011. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3): 564-567. DOI:10.1111/j.1755-0998.2010.02847.x
Fulton JE. 2020. Advances in methodologies for detecting MHC-B variability in chickens. Poultry Science 99: 1267–1274. DOI: 10.1016/j.psj.2019.11.029
Fulton JE, Juul-Madsen HR, Ashwell CM, McCarron AM, Arthur JA, O’Sullivan NP & Taylor R Jr. 2006. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics, 58: 407–421. DOI: 10.1007/s00251-006-0119-0
Han B, Lian L, Qu L, Zheng J & Yang N. 2013. Abundant polymorphisms at the microsatellite locus LEI0258 in indigenous chickens. Poultry Science, 92: 3113–3119. DOI: 10.3382/ps.2013-03416
Ige AO, Salako AE, Ojedapo LO & Adedeji TA. 2013. Biochemical characterization of indigenous Fulani and Yoruba ecotypes chicken of Nigeria. African Journal of Biotechnology, 12(50): 7002-7008. DOI: 10.5897/AJB2013.12816
Izadi F, Ritland C & Cheng KM. 2011. Genetic diversity of the Major Histocompatibility Complex region in Commercial and non-commercial chicken flocks using the LEI0258 microsatellite markers. Poultry Science, 90: 2711–2717. DOI: 10.3382/ps.2011-01721
Juul-Madsen HR, Nielsen OL, Krogh-Maibom T, Rontved CM, Dalgaard TS, Bumstead N & Jorgensen PH. 2002. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection, Poultry Science, 81(5): 649–656. DOI: 10.1093/ps/81.5.649
Kaufman J, Milne S, Göbel TW, Walker BA, Jacob JP, Auffray C, Zoorob R & Beck S. 1999. The chicken B locus is a minimal essential major histocompatibility complex. Nature, 401: 923-925. DOI: 10.1038/44856
Librado P & Rozas J. 2009. DnaSP v6: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. DOI: 10.1093/bioinformatics/btp187
Macklin KS, Ewald SJ & Norton RA. 2002. Major histocompatibility complex effect on cellulitis among different chicken lines. Avian Pathology, 31(4): 371–376. DOI: 10.1080/03079450220141642
McConnell SK, Dawson DA, Wardle A & Burke T. 1999. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken. Animal Genetics, 30: 183–189. DOI: 10.1046/j.1365-2052.1999.00454.x
Miller MM & Taylor RL. 2016 Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poultry Science, 95: 375–392 DOI: 10.3382/ps/pev379. DOI: 10.3382/ps/pev379
Mwambene PL, Kyallo M, Machuka E, Githae D & Pelle R. 2019. Genetic diversity of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania based on Major Histocompatibility Complex-linked microsatellite LEI0258 marker typing. Poultry Science, 98(7):2734-46. DOI: 10.3382/ps/pez076
Ncube KT, Jooste PJ, Soma P, Dzomba EF & Muchadeyi FC. 2014. Polymorphism of the Major Histocompatibility Complex and Genetic Structure of Southern African Village Chicken Populations. International Journal of Poultry Science, 13(6): 357-363. DOI: 10.3923/ijps.2014.357.363
Ngeno K, Van der Waaij EH, Megens HJ, Kahi AK, Van Arendonk JAM & Crooijmans RPMA. 2015. Genetic diversity of different indigenous chicken ecotype using highly polymorphic MHC-linked and non- MHC microsatellite markers. Animal Genetic Resources, 56: 1–7. DOI: 10.1017/S2078633614000484
Nikbakht G & Esmailnejad A. 2015. Chicken major histocompatibility complex polymorphism and its association with production traits. Immunogenetics, 67:247–252. DOI:10.1007/s00251-015-0832-7
Nikbakht G, Atefeh E & Neda B. 2013. LEI0258 microsatellite variability in Khorasan, Marandi, and Arian Chickens. Biochemical Genetics, 51: 341–349. DOI: 10.1007/s10528-013-9567-z
Nordskog AW & Gebriel GM. 1983. Genetic aspects of Rous sarcoma-induced tumor expression in chickens. Poultry Science, 62(5): 725–732. DOI: 10.3382/ps.0620725
Oladejo OA, Oseni SO, Entfellner JBD, Kyallo M, Keambou CT & Pelle R. 2021a. Variability in            the Alleles and B-haplotypes of the Major Histocompatibility Complex-linked LEI0258 microsatellite marker in four Nigerian locally adapted chicken populations. Proceedings of the 2nd Annual Conference of the Research and Development Committee of the Federal College of Animal Health and Production Technology, Ibadan, Nigeria. Pages, 107-112.
Oladejo OA, Oseni SO, Oguntunji AO, Ayoola MO, Alabi OM, Aderemi FA & Lawal TE. 2021b. Quantitative traits characterization of four Nigerian locally-adapted chickens. Proceedings of the 26th Annual Conference of Animal Science Association of Nigeria (ASAN) & 10th ASAN-NIAS Joint Annual Meeting, Uyo, Nigeria. Pages, 529–532.
Olufowobi OT, Ilori BM, Olowofeso O, Sogunle OM & Omotoso AO. 2020. Genetic variation of the major histocompatibilty complex-B haplotypes in Nigerian local chicken populations Agricultura Tropica et Subtropica, 53(4): 175–181. DOI: 10.2478/ats-2020-0017
Pevzner I, Nordskog AW & Kaeberle ML. 1975. Immune response and the B blood group locus in chickens,       Genetics, 80(4): 753–759. DOI: 10.1093/genetics/80.4.753
Piertney SB & Oliver MK. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity, 96: 7-21.
Plachy ÃJ. 1984. Hierarchy of the B (MHC) haplotypes controlling resistance to rous sarcomas in a model of inbred lines of chickens. Folia Biologica, 30 (6): 412–425.
Schat KA, Taylor Jr. RL & Briles WE. 1994. Resistance to Marek’s disease in chickens with recombinant haplotypes to the major histocompatibility (B) complex. Poultry Science, 73(4): 502–508. DOI: 10.3382/ps.0730502
Schierman LW and Collins WM. 1987. Influence of the major histocompatibility complex on tumor regression and immunity in chickens. Poultry Science, 66(5): 812–818. DOI: 10.3382/ps.0660812
Tamura K, Stecher G, Peterson D, Filipski A & Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729. DOI: 10.1093/molbev/mst197
Tor NE, Adebambo AO, Wheto M, Sogunle OM, Ikeobi CO, Ajibike AB, Omotoso AO, Shems K, Durosaro S, Mendy EW, Oladejo O & Ifeanyi U. 2021. Genetic diversity and phylogeographic structure of West African village chickens based on a 920bp segment of the mtDNA D-loop. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 14(4): 26-36. DOI: 10.9790/2380-1404012636
Touko BH, Keambou CT, Han JM, Bembidé C, Skilton RA, Ogugo M, Manjeli Y, Osama S, Cho CY & Djikeng A. 2015. Molecular typing of the major histocompatibility complex B microsatellite haplotypes in Cameroon chicken. Food and Agriculture Organization of the United Nations Animal Genetic Resources, 56: 47–54. DOI: 10.1017/S2078633614000538
Wang H, Ma T, Chang G, Wan F, Liu X, Liu L, Xu L, Chen J & Chen G. 2014. Molecular genotype identification of different chickens: major histocompatibility complex. The Open Access Journal of Science and Technology, 2(8): 1-7.  DOI: 10.11131/2014/101111