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Major Histocompatibility Complex (MHC) is a group of genes that generally 

influence immune response in vertebrates, and it has been explored among 

different animal species in various countries. However, there is a paucity of 

information on its application in Nigerian locally-adapted chickens (NLAC). This 

research investigated genetic polymorphism, allele variability, and genetic 

relationships using LEI0258 major histocompatibility complex-linked 

microsatellite marker among four NLAC populations: Fulani × Yoruba ecotypes, 

FUNNAB Alpha × Noiler breeds. Blood samples were randomly collected from 

50 mature birds in each population and DNA was extracted and subsequently 

subjected to PCR, Sanger sequencing, and bioinformatic analysis. There were two 

variable numbers of tandem repeats (VNTRs), with 90% of the alleles containing 

only one R13 and varying numbers of the R12 motifs that ranged from 1 to 19. 

Additional polymorphism was revealed by the presence of five SNPs and three 

indels in the upstream and downstream regions of LEI0258. A total of 48 alleles 

were observed with sizes ranging from 188 to 530 base pairs while the allele 

frequencies within the populations ranged from 1.9 to 29.2%. However, only 17 

out of the 48 alleles had corresponding MHC-B haplotypes. Haplotypes B2, B12, 

and B21 found in this study had been reported to confer resistance to infectious 

poultry diseases especially avian influenza in locally adapted chickens. There 

were high allelic variability and genetic polymorphisms observed via the atypical 

LEI0258 microsatellite in describing the MHC-B region. 
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Introduction 

Nigerian locally adapted chickens (NLACs) show high 

diversity in body sizes, plumage colors, feather 

distribution, and even their adaptation within the same 

flock (Ajayi, 2010). There have been studies 

elucidating the genetic diversity of Nigerian chickens 

using morphological and biochemical descriptors 

(Apuno et al., 2011; Ige et al., 2013), and molecular 

studies on the genetic diversity of Nigerian chickens 

(Adebambo et al., 2010; Ajibike et al., 2017; Tor et al., 

2021). However, limited molecular studies have been 

done on these chicken populations to illustrate the 

genetic mechanism of their adaptation using the 

microsatellite markers in the major histocompatibility 

complex (MHC) region (Olufowobi et al., 2020).  

 Most vertebrates possess the MHC genetic region, 

which is essential for recognizing foreign antigens and 

triggering the immune system's defense against 

infections (Piertney and Oliver, 2006). In chickens, the 

genetic area primarily known for influencing disease 

resistance and immunological responses is the MHC, 

commonly known as the B-complex (Miller and 

Taylor, 2016). Additionally, the avian MHC genes 

play several non-immune roles in the production 

process and the success of reproduction (Nikbakht and 

Esmailnejad, 2015) and other important economic 
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traits in these birds. In size, the MHC of the chicken is 

minimal, compact, and 20-fold smaller than that of 

mammals (Davison, 2003) and hence is called minimal 

essential MHC (Kaufman et al., 1999). The LEI0258 

locus which is located within the MHC B-complex is 

highly polymorphic and complex with a variable 

number of tandem repeats (VNTRs) that have been 

optimally used for identifying MHC-B haplotypes and 

studying the genetic diversity of chicken populations 

(Fulton, 2020).  

 Numerous studies have utilized LEI0258 

microsatellite marker among chicken populations from 

several countries including Ethiopia (Addisu et al., 

2020), Tanzania (Mwambene et al., 2019), Kenya 

(Ngeno et al., 2015), Cameroon (Touko et al., 2015) 

and South Africa (Ncube et al., 2014). High levels of 

MHC diversity generally in the non-serologically 

defined random mating population, indigenous and 

commercial breeds have been reported previously 

(Izadi et al., 2011). Novel alleles have also been 

identified in chickens from different extensively reared 

populations from different countries (Chazara et al., 

2013; Ncube et al., 2014). However, there is a paucity 

of information on MHC applications among Nigerian 

chickens. Thus, this research used the MHC-linked 

LEI0258 marker typing to identify the novel and 

unique alleles to aid in understanding the genetic 

variability within Nigerian locally-adapted chickens. 

This research investigated genetic polymorphism, 

allelic variability, and genetic relationships using 

LEI0258 major histocompatibility complex-linked 

microsatellite marker among four NLAC populations 

Genetic information of these chickens is important for 

deciding on conservation and improvement in their 

various production settings for sustainable use.  
 

Materials and Methods 

Sample collection and DNA extraction 

Blood samples (2.5 ml) were randomly collected from 

200 adult chickens (6 months or older) from four 

NLAC populations (50 chickens each) of Fulani 

ecotype chickens (FEC), Yoruba Ecotype chickens 

(YEC), FUNNAB Alpha (FAC) chickens and Noiler 

chickens (NC) as shown in Table 1. 

 Blood samples were drawn by venipuncture from 

the wing vein and stored in EDTA blood collection 

tubes. The genomic DNA extraction was carried out at 

the FUNAAB Biotechnology and Acutigenetics 

Laboratory, both in Abeokuta, Ogun State, Nigeria. 

Genomic DNA was extracted from whole blood 

following the Zymo® Quick DNA Miniprep plus kit 

for biological fluids and cells protocol (Zymo 

Research Corp; www.zymoresearch.com). The DNA 

quality and quantity were assessed using NanoDrop 

2000c Spectrophotometer (Thermo Scientific, 

Wilmington, Delaware, USA). The integrity of the 

extracted DNA was assessed using 0.8% agarose gel 

electrophoresis in the presence of 0.25X GelRed 

nucleic acid gel stain (Biotium, USA) and visualized 

using GelDoc-It®2310 Imager (Ultra-violet products - 

UVP Bioimaging System Ltd, Cambridge, UK. 

 

Polymerase Chain Reaction amplification of 

LEI0258 locus  

The primer pair LEI0258-F: 5’-

CACGCAGCAGAACTTGGTAAGG-3’ and 

LEI0258-R: 5’-AGCTGTGCTCAGTCCTCAGTGC-

3’ (Fulton et al., 2006) were used for PCR 

amplification of the MHC-linked microsatellite. The 

5’ end of the forward primer was tagged with the T7 
promoter sequence (underlined): T7-LEI0258F 5’-

TAATACGACTCACTATAGGGCACGCAGAACT

TGGTAAGG-3’ and the reverse primer with the SP6 

promoter sequence (underlined): 5’-

ATTTAGGTGACACTATAAGCTGTGCTCAGTCC

TCAGTGC-3’. T7 and SP6 primers were used for 

Sanger sequencing. 

 The PCR reaction mixture consisted of 40 ng DNA, 

0.1 μM each primer, 1X Bioneer AccuPower PCR 
PreMix (Bioneer, Korea), and 3.4 μL of MilliQ water 

added to a final volume of 10 μl. Amplification was 

performed in a GeneAmp PCR System 9700 

thermocycler (Applied Biosystems, Foster City, CA) 

using the following PCR program: 94 °C for 3 minutes, 

followed by 30 cycles of 94 °C for 45 seconds, 63 °C 

for 1 minute, 72 °C for 2 minutes, and a final extension 

at 72 °C for 20 minutes. The PCR products were 

analyzed in a 2% agarose gel stained with 0.025X 

GelRed (Biotium, USA). Before Sanger sequencing, 

gel purification was done for heterozygote samples to 

purify single bands (Figure 1) according to the Qiagen 

QIAquick Gel Extraction Kit (Hilden, Germany) 

protocol. Both the PCR and the gel 

extraction/purification were carried out at the BecA-

ILRI Hub. The purified amplicons were Sanger-

sequenced at Macrogen, Netherlands. The sequenced 

DNA fragments were subsequently used for 

Bioinformatics analyses.  

 

Sequence Data Analysis 

After sequencing, the forward (F) and reverse (R) 

sequences of each of the chicken samples were 

assembled to form a single consensus sequence using 

the CLC Genomics Workbench 8 

(http://www.clcbio.com/download) software. Basic 

local alignment search tool (BLAST) was used to 

check the percentage (%) sequence similarity between 

the query (obtained consensus sequences) and the 

target LEI0258 sequence retrieved from the GenBank 

database of the National Centre of Biotechnology 

Information (NCBI). In addition, pairwise and 

multiple sequences alignments were performed using 

the Clustal W function of the MEGA version 6.0 

software (http://megasoftware.net) and consensus 

sequences blasted in the NCBI GenBank database 

(Tamura et al., 2013). The identification of the genetic 

http://www.zymoresearch.com/
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polymorphism and conserved sequence motifs from 

the aligned sequence was done using DnaSP version 

6.0 (http://www.ub.edu/dnasp/) and a summary table 

used to reveal polymorphisms at microsatellite repeats 

(R13 / R12)  and  flanking  regions  of  all  sequenced 

alleles based on conserved regions (Librado and 

Rozas, 2009) and other were downloaded using the 

appropriate links. The population structure and the 

haplotype plots of the NLAC sequences were 

accomplished using the population and evolutionary 

genetics analysis system PEGAS and Arlequin 

software (Excoffier and Lischer, 2011). 

 

Table 1. The physical attributes and locations of the sampled Nigerian locally-adapted chickens 
Local ecotypes Attributes Improved breed Attributes 

Fulani 

 
 

 

Heavy local 

ecotypes, found 

majorly in the 

northern part of 

Nigeria and among 

the Fulani tribes.  

• Average 

matured body 

weight (BW) of 

1.46 kg (males) 

and 1.07 kg 

(females). 

• GPS: - 

9.0765oN 7.3986oE 

(FCT), 

• Elevation: 

1,180 feet. 

FUNAAB-Alpha Crossbred of local 

ecotypes (naked-

neck and frizzled) 

with exotic breeds.  

• Average 

matured BW of 

2.06 kg (males) 

and 1.47 kg 

(females).  

• GPS:  -7.49' N, 

4.55' E (Ile-Ife) 

• Elevation: 873 

feet. 

Yoruba 

 

Small-bodied, light 

ecotype found 

majorly in 

southwestern 

Nigeria.  

• Average 

matured BW of 

0.87 kg (females) 

and 0.94 kg 

(males). 

• White 

eggshell. 

• GPS:  7.49' N, 

4.55' E 

• Elevation: 873 

feet. 

Noiler 

 

Heavy breeds, a 

crossbreed of 

layers, broilers, and 

local chickens.  

• Average 

matured BW of 

2.53 kg (males) 

and 2.23 kg 

(females).  

• 150-200 eggs / 

year.  

• GPS: 7.49' N, 

4.55' E  

• Elevation: 873 

feet. 

Source: Oladejo et al., 2021b 

 

  
(A) (B) 

     

Figure 1. Agarose gels showing heterozygous LEI0258 alleles before purification (A) and after gel purification (B).  

 

Results 

The frequencies of the LEI0258 alleles of the four 

chicken populations and their corresponding MHC-B 

haplotypes (Table 2). In total, there were 48 alleles 

found among the four NLAC populations. The sizes of 

these alleles ranged from 193 to 530 base pairs (bp) 

while the allele frequencies ranged from 1-18 across 

the populations. Seven alleles occurring at a low 

http://www.ub.edu/dnasp/
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frequency were found only in the NC namely 196, 220, 

241, 297, 320, 383, and 444 bp. The highest occurring 

allele sizes were 309, 217, and 261 with a total allele 

frequency of 18, 12, and 7, respectively. Although 

none of these allele sizes were individually found in all 

four populations, allele 309 bp was found in FEC, NC, 

and YEC while allele size 217 bp was found in FA, 

NC, and YEC populations. Moreover, allele size 261 

bp was found in FA and NC populations. Furthermore, 

32 of the 48 alleles observed were unique or private to 

only one of the populations. For example, 12 alleles 

were unique to YEC namely: 193, 195, 206, 227, 342, 

347, 420, 421, 422, 474, 513, and 530 bp. 

Additionally, ten allele sizes were private only to the 

NC population in this case; 196, 220, 241, 297, 311, 

320, 358, 383, 443, and 444 bp. Five allele sizes 249, 

262, 264, 306, and 418 bp were uniquely found in the 

FA population. Five allele sizes 259, 263, 319, 349, 

and 393 bp were also unique to the FEC population, 

respectively. However, out of the 48 alleles present in 

the four chicken populations studied, only 17 (35.4%) 

alleles had corresponding MHC-B haplotypes.

 
Table 2. The LEI0258 allele frequencies and their corresponding MHC-B haplotypes 

S/N Allele (bp) 
               Populations Total allele  Serology 

FA FEC NC YEC   Frequency GenBank B-haplotype 

1 193 - - - 2 2 B15.1, B11, B61, B27 
2 194 1 - 1 1 3 BW3 
3 195 - - - 1 1  
4 196 - - 1 - 1  
5 206 - - - 1 1 B13.2, B13, B17, BW11 
6 217 7 - 4 1 12  
7 218 2 - 2 - 4  
8 219 - - 1 1 2  
9 220 - - 1 - 1  
10 221 - - 1 1 2  
11 227 - - - 1 1  
12 241 - - 1 - 1  
13 249 1 - - - 1 B15.2, B22, B73 
14 259 - 3 - - 3  
15 261 5 - 2 - 7 B15, B2, B29 
16 262 2 - - - 2  
17 263 - 1 - - 1  
18 264 1 - - - 1  
19 273 1 - 1 - 2  
20 297 - - 1 - 1  
21 306 1 - - - 1  
22 307 - - 4 1 5 B72, B78 
23 309 - 4 11 3 18 B10, B24, B26, B76 
24 310 - 1 3 - 4  
25 311 - - 3 - 3  
26 319 - 1 - - 1  
27 320 - - 1 - 1 B74 
28 333 - - 1 2 3 BW4 
29 342 - - - 1 1  
30 345 - 1 - 4 5 B14 
31 346 - - 1 2 3  
32 347 - - - 1 1  
33 349 - 2 - - 2  
34 357 - 1 3 - 4 B21 
35 358 - - 3 - 3  
36 381 - 1 - 4 5 B13.1 
37 382 2 - - 1 3  
38 383 - - 1 - 1  
39 393 - 1 - - 1 B1 
40 418 1 - - - 1  
41 420 - - - 1 1 B62 
42 421 - - - 1 1  
43 422 - - - 1 1  
44 443 - - 4 - 4 B6 
45 444 - - 1 - 1  
46 474 - - - 1 1 B12.2, B71 
47 513 - - - 1 1 B12.3 
48 530 - - - 1 1  

*NB: In bold are the alleles with the highest frequencies 
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Other information from the Sanger sequences of this 

genomic DNA using the LEI0258 markers are a 

variable number of tandem repeats (VNTRs), single 

nucleotide polymorphisms (SNP), and insertion-

deletion (indel) as shown in Table 3 and Figure 2. In 

the region, the polymorphisms found are as follows: 

➢ Upstream (“on the left”) of the tandem repeat, there 
is a  

✓ TT/– indel at positions -32 and -31,  

✓ a G/A SNP at position -30 and  

✓ a G/A SNP at position -13.  

➢ Within the tandem repeat;  

✓ R13 (ATGTCTTCTTTCT) is the count of R13 

units,  

✓ R12 (TTCCTTCTTTCT) is the count of R12 units 

and  

✓ a C/T SNP at position 3 in the last R12, 

transforming TTCCTTCTTTCT into 

TTTCTTCTTTCT as seen in YEC002C 

➢ In the region downstream (“on the right”) of the 
tandem repeat,  

✓ there is a T/C SNP at position +1,  

✓ an insertion of ATTTTGAG between positions +9 

to +16 (none of the FEC had this insertion), 

✓ a small indel -/A at position +19, an A/T SNP at 

position +25, and a T/A SNP at position +32 

 All the sequences listed in Table 3 were submitted 

to the International Nucleotide Sequence Database 

Collaboration (INSDC) with Bioproject accession 

numbers PRJEB58853 (ID: 923574). These 55 

sequences listed are with accession numbers ranging 

from OX406934 to OX406988 (Table 3).

 

 
 

 

Figure 2. The positions of a variable number of tandem repeats (VNTRs) – R13 & R12 in between the upstream 

and downstream flanking regions, 5 SNPs (in blue boxes), and 3 indels (denoted with d in white boxes) within the 

LEI0258 locus (P3 is the SNP in position 3 of the last R12 VNTRs) 

 

 The R13 and R12 are independent repetitions of 

two repeat motifs of 13 and 12 base pairs R13: 

ATGTCTTCTTTCT and R12: TTCCTTCTTTCT. 

The R13 with a 13 bp repeat unit was found with a 

frequency of one in more than 90% of the studied 

alleles and a frequency of 15-25 in the remaining 10% 

of the alleles. The number of R12 motifs in the 

individual sequences ranged from 1 to 19. The 

upstream region is just before the R13 VNTRs, which 

numbered from -86 to -1 and 1 to 76 for the 

downstream region immediately after the R12 VNTRs. 

In all, there was a total of five SNPs and three indels 

in the upstream and downstream regions (Figure 2).  
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Population structure of the NLAC population 

The haplotype network among the NLAC (Figure 3) 

illustrated the possible structure of the chicken 

populations. There were three major clusters (1-3) as 

well as three minor clusters (4-6). Cluster 1 represents 

the four populations and is, therefore, the main cluster 

with NC representing 50% of the cluster while FEC 

and YEC were about 20% each of the clusters and FA 

is about 10% of the major cluster 1. FA represents 

about 70% of cluster 2 while NC and YEC were about 

10% and 20% respectively. FEC was not found in 

cluster 2. Cluster 3 grouping NC (60%) and FA (40%) 

represents only the improved breeds which were 

carriers of both local and exotic genes; this explains 

the reasons why this cluster is far away from other 

clusters because of the exotic genes which are more 

commonly found in the improved breed population 

studied. Minor clusters 4 and 6 were quite similar as 

they only contain the NC, FA, and YEC in 60, 20, and 

20%, respectively. The number of bars between two 

consecutive nodes/clusters represents mutations. 

Cluster 5 is a unique cluster with only the Fulani 

haplotypes observed, the reason for this could be 

attributed to the fact that Fulani chickens sampled in 

this study were reared in isolated Kraal settlements of 

the Fulani tribes, and these chickens hardly crossbreed 

with other chicken populations. 

 

 
 

Figure 3. Haplotype network showing the genetic variations and possible structure of NLAC populations; the 

number of bars between two consecutive nodes/clusters represents mutations (the main nodes/clusters are 

numbered 1-6) 

 

Discussion 

In this study, the MHC polymorphisms of the NLACs 

were obtained using the LEI0258 MHC-linked 

microsatellite marker. This microsatellite marker 

LEI0258 (accession number – Z83781) is mapped to 

chromosome 16 (McConnell et al., 1999). As expected 

for a normal microsatellite marker, the LEI0258 alleles 

display a significant range in sizes (Adebabay, 2018); 

this is evident in this study because out of 200 samples 

sequenced, 48 distinct alleles were found. The 

distribution of the LEI0258 microsatellite alleles 

among the populations was shown to be appropriate by 

the observed allele frequencies, which ranged from 1.9 

to 29.2%. Of all these alleles, there were seven alleles 

with low frequencies below 2% namely; 196, 220, 241, 

297, 320, 383, and 444 bp. In small populations, these 

rare alleles may be susceptible to loss due to selection 

pressure or genetic drift. The most prevalent allele, 309 

bp, may be important for an individual's survival or 

fitness if they have it (Ncube et al., 2014). The present 

study found allele sizes to vary between 188 bp and 

530 bp as found in Table 3 and this corroborates the 

findings obtained by Mwambene et al. (2019); 

Chazara et al. (2013) and Fulton et al. (2006) in 

different chicken populations. Fulton et al. (2006) 

reported the allele size of North American and 
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European layer-type chickens ranged from 182 bp to 

552 bp and a total of 26 alleles were identified for the 

LEI0258 marker. Chazara et al. (2013) stated that 79 

different alleles were identified among the African, 

Asian, and European chickens ranging from 181 to 552 

bp allele sizes. Moreover, among 10 Tanzanian 

chicken ecotypes, the size of the sequenced alleles 

ranged from 249 bp to 552 bp with a total of 30 alleles 

(Mwambene et al., 2019).  

 Furthermore, the existence of numerous frequent 

and common alleles in all chicken groups under study 

revealed close links between NLAC populations. The 

high allelic polymorphism throughout the examined 

chicken populations is implied by the huge numbers 

and wide range of allele sizes at this marker. To 

illustrate the heterogeneity in chicken populations 

depending on their production settings, diseases 

resistance (tolerance) or susceptibility, origins, 

dispersion, and level of interactions within and among 

the NLAC population; there may be variances in allele 

counts between populations (Oladejo et al., 2021a). 

 Sequence information from the LEI0258 includes 

the varying numbers of tandem repetitions (VNTRs). 

R13 and R12 were the two primary VNTRs. A single 

frequency was detected for the R13 with the 13-bp 

repeat unit "ATGTCTTCTTTCT." in more than 90% 

of the samples similar to what was found in the wild 

Red jungle fowl, Leghorn and Chinese indigenous 

chickens (Wang et al., 2014) and 15-25 frequencies in 

the remaining 10% of the samples. This is consistent 

with other studies with more frequencies of the R13 

motifs (Chazara et al., 2013; Nikbakht et al., 2013; 

Han et al., 2013). The number of R12 motifs 

(TTCCTTCTTTCT) in the individual sequences 

ranged from 1 to 19 which is also comparable to the 

study by Mwambene et al. (2019). The pattern of the 

motif used in this present study corroborated with the 

pattern of arrangement of the nucleotide bases used by 

Chazara et al. (2013) with the two VNTRs starting 

with ‘ATG’ and ‘TT’ and both ending with ‘CT’ 
respectively. On the other hand, this is a bit different 

in the order of arrangement in Fulton et al. (2006) in 

which the R13: CTATGTCTTCTTT and R12: 

CTTTCCTTCTTT with the ‘CT’ starting these 
independent repeat motifs and ending with ‘CTTT’ 
(Oladejo et al., 2021a). In all, there was a total of five 

SNPs and three indels in the upstream and downstream 

regions of the LEI0258 marker in NLAC which is a 

pointer to how polymorphic the LEI0258 sequences of 

the Nigerian locally adapted chickens are. Although a 

SNP was detected in position 3 of the last R12, from 

the literature, SNPs were neither reported nor 

commonly found inside the VNTRs. This is therefore 

a novel polymorphism situated in the VNTR. 

 Serologically, B-haplotypes from the LEI0258 

alleles are useful to determine or study chicken 

populations that confer either susceptibility or 

resistance to certain common diseases in chickens. For 

the same MHC haplotypes from different chicken 

populations and sources, there was a strong correlation 

between LEI0258 alleles and the serologically 

characterized MHC haplotypes (Fulton et al., 2006). 

The most common allele size 309 found in 18 out of 

48 alleles originating from three different populations 

in this study was associated with well-defined 

haplotypes: B10, B24, B26, and B76 (Fulton et al., 

2006).  

 These 17 alleles correspond individually with one 

to four MHC B-haplotypes each (last column of Table 

2). From the table, allele 193 corresponds with four 

haplotypes with the B15.1 haplotype being the major 

haplotype with a defined influence on either disease 

resistance or susceptibility as reported in previous 

studies (Fulton et al., 2006). 

 Consistently, the allele 193 found in this study has 

been corresponding with the B15.1 haplotype (Fulton 

et al., 2006) and it is found only in the YEC. This 

B15.1 haplotype was reported to be associated with 

resistance to avian infectious bronchitis disease 

(Bacon et al., 2004), poor resistance to avian leucosis 

(Bacon et al., 1981), poor immune response to 

infectious bursal disease (Bacon et al., 1981) and 

susceptibility to Marek’s disease (Briles et al.,1977), 

Rous sarcoma (Nordskog and Gebriel, 1983) and 

Salmonella enteritidis (Cotter et al., 1998). The Allele 

194 BW3 haplotype is found though in small 

percentages across the 3 out of four populations except 

in the FEC. Allele 194 bp which is BW3 and 261 bp 

allele (B15) conferred poor immune responses against 

infectious bursal disease (Esmailnejad et al., 2017). 

Allele 206 found only in the YEC is the allele size for 

both B17 and B13 haplotypes, although these two 

haplotypes are serologically distinct (Fulton et al., 

2006). The B17 haplotype is associated with poor 

resistance to Marek’s disease (Schat et al., 1994) while 

the B13 (allele 205) haplotype is associated with 

resistance to Escherichia coli (Macklin et al., 2002), 

poor resistance to avian infectious bronchitis disease 

(Bacon et al., 1981), poor resistance to avian leucosis 

(Bacon et al., 1981) and Rous sarcoma (Schierman and 

Collins, 1987), moderate resistance to infectious bursal 

disease (Bacon et al., 1981) and susceptibility to 

Marek’s disease (Briles et al., 1977) and Avian 

Influenza (Boonyanuwat et al., 2006). 

 Even though allele 249 corresponds with 

haplotypes B15.2, B22, and B73, none of these 

haplotypes had been categorically defined to confer 

important disease susceptibility/resistance in the 

literature. Although B15, B15.1, and B15.2 are 

haplotype variants; these haplotypes are serologically 

similar with unique allele sizes for the LEI0258 marker 

(Fulton et al., 2006). The allele 261 which is found 

only in the improved chickens is corresponding with 

haplotypes B2, B15, and B29. Haplotype B2 is 

associated with resistance to Marek’s disease (Briles et 

al., 1977), good immune response to infectious bursal 
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disease (Bacon, 1987), susceptibility to avian leucosis 

(Bacon et al., 1981) Rous sarcoma (Collins et al., 

1977). The B23 haplotype is found to be susceptible to 

Marek’s disease (Schat et al., 1994). Furthermore, the 

B21 (allele 357) haplotype found in the FEC and NC 

in this study are known to be associated with resistance 

to avian influenza (Boonyanuwat et al., 2006), poor 

resistance to avian leucosis (Bacon et al., 1981) strong 

resistance to Marek’s disease (Blankert et al., 1990), 

good immune response to infectious bursal disease 

(Bacon et al., 1981) and susceptibility to Avian 

infectious bronchitis (Bacon et al., 2004) and E. coli 

(Macklin et al., 2002). The B1 (allele 393) haplotype 

is found only in the FEC and is associated with a high 

mortality rate to Salmonella enteritidis (Pevzner et al., 

1975) and promotes tumor growth to Rous sarcoma 

(Nordskog and Gebriel, 1983).  The B6 (allele 443) 

haplotype found only in the NC is associated with 

resistance to Marek’s disease (Briles et al.,1977) as 

well as with tumor regression to Rous sarcoma disease 

(Schierman and Collins, 1987). The haplotypes B12 

(allele 487), B12.2 (allele 474,) and B12.3 (allele 513) 

are all haplotype variants and found in the YEC. These 

B12 haplotypes were reported by Bacon (1987) to be 

linked with a poor immune response to infectious 

bursal disease but strong resistance to avian leucosis 

(Bacon et al., 1981) and suppressing tumor growth to 

Rous sarcoma (Plachy, 1984).  

 Other important haplotypes reported by other 

scientists known to confer notable influence on 

diseases include: B19 (allele 539) haplotype is found 

in birds susceptible to avian infectious bronchitis 

(Juul-Madsen et al., 2002) and Marek’s disease (Briles 
et al., 1977, Blankert et al., 1990) as well as with those 

with strong resistance to avian leucosis (Bacon et al., 

1981);  B18 (allele 247) haplotype was associated with 

susceptibility to S. enteritidis (Cotter et al.,1998); B5 

(allele 295) haplotype is associated with poor 

resistance to avian leucosis (Plachy, 1984), poor 

immune response to infectious bursal disease (Bacon, 

1987) and susceptibility to Marek’s disease (Briles et 

al., 1977); B4 (allele 182) haplotype is associated with 

strong resistance to infectious bursal disease (Juul-

Madsen et al., 2002) whereas B3 haplotype correlates 

with susceptible to Marek’s disease (Briles et 

al.,1977). Summarily, haplotypes B2, B12, and B21 in 

this study are economically important haplotypes as 

they were reported to be associated with resistance to 

infectious poultry diseases especially avian influenza 

in locally adapted chickens as reported by Wang et al. 

(2014) and Esmailnejad et al. (2017). 

 

Conclusion 

There were high allelic variability and genetic 

polymorphisms observed via the atypical LEI0258 

microsatellite in describing the MHC-B region. These 

were detected in the four chicken populations of 

NLAC studied as 5 SNPs and 3 indels were found in 

the flanking regions. Also, when compared with 

standard, defined serological haplotypes; haplotype B2 

(261 bp) is associated with resistance to Marek’s, and 

B21 (357 bp) haplotype found in the FEC and NC is 

associated with resistance to avian influenza disease. 

The comprehensive reference set of alleles and 

haplotypes is now available to identify and classify 

MHC populations. The present study was able to 

identify novel alleles and haplotypes in which their 

importance has not been previously identified. Allele 

249 corresponds with haplotypes B15.2, B22, and B73 

of which none of these haplotypes had been previously 

categorically or defined to confer any important 

disease (avian influenza or Marek's disease) 

susceptibility/resistance. 
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