Prevalence and Antimicrobial Resistance of Salmonella Enterica Serovar Infantis Isolates from Poultry: a review

Document Type : Review

Authors

1 Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran

2 Department of Laboratory Sciences, Faculty of Para-Medicine, Babol University of Medical Sciences, Babol, Iran

Abstract

Salmonella Infantis (S. Infantis) is one of the most important zoonotic bacteria, which has become one of the leading public health problems in the world, especially in developing countries. The prevalence of multi-drug resistant (MDR) S. Infantis strains has increased worldwide and can be prevented by controlling the use of antibiotics in poultry. The purpose of this review article is to discuss the status of S. Infantis antibiotic resistance, especially, its prevalence, detection methods and resistance mechanisms in isolates from poultry samples using search engines such as Web of Science, Scopus, and PubMed. Based on our review, S. Infantis was the most prevalent serovar in poultry accompanied by an enhancing number of resistance genes in these strains. The use of different genotypic and genetic methods can rapidly detect the presence of Salmonella in suspicious specimens to prevent disease and epidemics. Genes such as invA, hilA and fliC were most commonly used genes in the detection of Salmonella, and other genes were viaB, spv, flijB, rfbJ and 16Sr RNA. The results of studies emphasize that poultry could act as reservoirs of MDR with a high tendency for dissemination. Resistance to the beta-lactam family is an important issue, because antibiotics such as beta-lactams are the best candidates for the treatment of salmonellosis, and this has raised concerns in the treatment of invasive Salmonella.  These findings highlight the need to find ways to manage and reduce the impact of antibiotic use in poultry and prevent the transmission of antibiotic-resistant S. Infantis to the human food chain and to find potential alternatives to antibiotics.

Keywords


Adebowale OO, Goh S & Good L. 2020.  The development of species-specific antisense peptide nucleic acid method for the treatment and detection of viable Salmonella. Heliyon, 6: e04110. DOI: 10.1016/j.heliyon.2020.e04110
Acar S, Bulut E, Stasiewicz MJ & Soyer Y. 2019. Genome analysis of antimicrobial resistance, virulence, and plasmid presence in Turkish Salmonella serovar Infantis isolates. International Journal of Food Microbiology, 307: 108275. DOI: 10.1016/j.ijfoodmicro.2019. 108275
Acheampong G, Owusu M, Owusu-Ofori A, Osei I, Sarpong N, Sylverken A, Kung HJ, Cho ST, Kuo CH, Park SE, Marks F, Adu-Sarkodie Y & Owusu-Dabo E. 2019. Chromosomal and plasmid-mediated fluoroquinolone resistance in human Salmonella enterica infection in Ghana. BMC Infectious Diseases, 19: 898-98. DOI: 10.1186/s12879-019-4522-1
Ahmadi Z, Ranjbar R &  Sarshar M. 2013. Genotyping of Salmonella enterica serovar enteritidis strains isolated from clinical samples by Pulsed-Field Gel Electrophoresis (PFGE). Journal of Isfahan Medical School, 31: 819-29.
Ahmed AM, Shimamoto T &  Shimamoto T. 2014. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. International Journal of Food Microbiology, 189: 39-44. DOI:  10.1016/j.ijfoodmicro.2014. 07.031
Álvarez-Fernández E, Calleja C, García-Fernández C & Capita R. 2012. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from poultry in Spain: comparison between 1993 and 2006. International Journal of Food Microbiology, 153: 281-7. DOI:10.1016/ j.ijfoodmicro.2011.11.011
Ammar AMA, Ahmed YAE, Asawy AMI & Ibrahim AA. 2010. Bacteriological studies on Salmonella Entertidis isolated from different sources in Dakhlia governorate. Assiut Veterinary Medical Journal, 56: 125-35. DOI: 10.21608/AVMJ.2010.173813
Ardestani H, Mousavi Gargari SL, Nazarian SH & Amani J. 2007. Rapid and specific detection of Salmonella typhimurium by PCR-ELISA. Pathobiology Research, 10: 51-62.
Ammar A M, Abdeen E E, Abo-Shama U H, Fekry E  & Kotb Elmahallawy E. 2019. Molecular characterization of virulence and antibiotic resistance genes among Salmonella serovars isolated from broilers in Egypt. Letters in Applied Microbiology, 68: 188-195. DOI: 10.1111/lam.13106
Asgharpour F, Mahmoud S, Marashi M & Moulana Z. 2018. Molecular detection of class 1, 2 and 3 integrons and some antimicrobial resistance genes in Salmonella Infantis isolates. Iranian Journal of Microbiology, 10: 104-10.
Asgharpour F, Rajabnia R, Ferdosi Shahandashti E, Marashi MA, Khalilian M &    Moulana Z. 2014. investigation of class i integron in salmonella infantis and its association with drug resistance. Jundishapur Journal of Microbiology, 7(5):e10019. DOI: 10.5812/jjm. 10019
Aviv G, Rahav G & Gal-Mor O. 2016. Horizontal transfer of the Salmonella enterica serovar infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. mBio, 7(5):e01395-16. DOI: 10.1128/mBio.0 1395-16
Azizpour A. 2021. Prevalence and antibiotic resistance of salmonella serotypes in chicken meat of Ardabil, northwestern Iran. Iranian Journal of Medical Microbiology, 15: 232-246.
Brenner FW, Villar RG, Angulo FJ, Tauxe R & Swaminathan B. 2000. Salmonella nomenclature. Journal of Clinical Microbiology, 38: 2465-7. DOI: 10.1128/JCM.38.7.2465-2467.2000
Carfora V, Alba P, Leekitcharoenphon P, Ballarò D, Cordaro G, Di Matteo P &  Franco A. 2018. Colistin resistance mediated by mcr-1 in ESBL-producing, multidrug resistant salmonella infantis in broiler chicken industry, Italy (2016–2017). Frontiers in Microbiology, 9(1880). DOI: 10.3389/fmicb.2018.01880
Chashni SHE, Hassanzadeh M, Fard MHB & Mirzaie S. 2009. Characterization of the Salmonella isolates from backyard chickens in north of Iran, by serotyping, multiplex PCR and antibiotic resistance analysis. Archives of Razi Institute, 64: 77-83.
Choi D, Chon JW, Kim HS, Kim DH, Lim JS, Yim JH & Seo KH. 2015. Incidence, antimicrobial resistance, and molecular characteristics of nontyphoidal salmonella including extended-spectrum β-lactamase producers in retail chicken meat. Journal of Food Protection, 78: 1932-7. DOI: 10.4315/0362-028X.JFP-15-145
Cosby DE, Cox N A, Harrison M A, Wilson JL, Buhr RJ &  Fedorka-Cray PJ. 2015. Salmonella and antimicrobial resistance in broilers: A review. Journal of Applied Poultry Research, 24: 408-426. DOI: 10.3382/japr/pfv038
Cunha-Neto AD, Carvalho LA,Carvalho RCT, Dos Prazeres Rodrigues D, Mano SB, Figueiredo EES & Conte-Junior CA. 2018. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poultry Science, 97: 1373-81. DOI:10.3382/ps/pex406
Di Marcantonio L, Romantini R,  Marotta F, Chiaverini A,  Zilli K, Abass A, Di Giannatale E, Garofolo G  & Janowicz A. 2022. the current landscape of antibiotic resistance of salmonella infantis in Italy: The expansion of extended-spectrum beta-lactamase producers on a local scale. Frontiers in Microbiology, 13. DOI: 10.3389/fmicb.2022.812481
Duc VM, Nakamoto Y, Fujiwara A, Toyofuku H, Obi T & Chuma T. 2019. Prevalence of Salmonella in broiler chickens in Kagoshima, Japan in 2009 to 2012 and the relationship between serovars changing and antimicrobial resistance. BMC Veterinary Research, 15: 108. DOI: 10.1186/s12917-019-1836-6
European Food Safety Authority, European Centre for Disease Prevention and Control.  2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal European Food Safety Authority, 12;15(12):e05077. DOI: 10.2903/j.efsa.2017. 5077
European Food Safety Authority (EFSA), European centre for disease prevention and control (ECDC). 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017.  EFSA Journal European Food Safety Authority, 12;16(12):e05500. DOI: 10.2903/ j.efsa.2018.5500
Fallah SH, Asgharpour F, Naderian Z & Moulana Z. 2013. Isolation and determination of antibiotic resistance patterns in nontyphoid salmonella spp isolated from chicken. International Journal of Enteric Pathogens, 1: 5-9416. DOI: 10.17795/ijep9416
Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB,  Figueiredo EES & Conte-Junior CA. 2019. Worldwide epidemiology of salmonella serovars in animal-based foods: a meta-analysis. Applied and Environmental Microbiology, 85. DOI: 10.1128/AEM.00591-19.
Ghoddusi A, Nayeri Fasaei B, Karimi V, Ashrafi Tamai I, Moulana Z. & Zahraei Salehi T. 2015. Molecular identification of Salmonella Infantis isolated from backyard chickens and detection of their resistance genesby PCR. Iranian Journal of Veterinary Research, 16(3), 293-297. DOI: 10.22099/IJVR.2015.3198
Ghoddusi A, Nayeri Fasaei B, Zahraei Salehi T & Akbarein H. 2019. Serotype Distribution and Antimicrobial Resistance of Salmonella Isolates in Human, Chicken, and Cattle in Iran. Archives of Razi Institute, 74: 259-66. DOI: 10.22092/ ari.2018.120267.1190
Hong Y, Liu T, Lee MD, Hofacre CL, Maier M, White DG, Ayers S, Wang L, Berghaus R & Maurer JJ. 2008. Rapid screening of Salmonella enterica serovars Enteritidis, Hadar, Heidelberg and Typhimurium using a serologically-correlative allelotyping PCR targeting the O and H antigen alleles. BMC Microbiology, 8: 178. DOI: 0.1186/1471-2180-8-178
Hosseinpour M, Sabokbar A, Bakhtiari A & Parsa S. 2013. Comparison of bacterial culture, ELISA and PCR techniques for detection of salmonella in poultry meat samples collected from Tehran. Journal of Microbial World, 6: 62 -72.
Ibrahim MA, Emeash HH, Ghoneim NH & Abdel-Halim MA. 2013. Seroepidemiological studies on poultry salmonellosis and its public health importance. Journal of World's Poultary Research, 3: 18-23.
Jong HY, Thae Su Pak, Sanpong P, Wajjwalku W, Sukpuaram T & Amavisit P. 2010. PCR-based restriction fragment length polymorphism for subtyping of salmonella from chicken isolates. Kasetsart Journal - Natural Science, 44 : 79 – 83.
Kagambèga A, Lienemann T, Aulu L, Traoré AS, Barro N, Siitonen A & Haukka K. 2013. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiology, 13: 253. DOI:10.1186/1471-2180-13-253
Kalaba V, Golić B, Sladojević Ž & Kalaba D. 2017. Incidence of Salmonella Infantis in poultry meat and products and the resistance of isolates to antimicrobials. IOP Conference Series: Earth and Environmental Science, 85: 012082. DOI: 10.1088/1755-1315/85/1/012082
Khaki P, Moradi Bidhendi S & Ezatpanah E. 2013. PCR–RFLP of isolated Salmonella from poultry with Sau3AI and HhaI restriction endonucleases in Arak. International Journal of Molecular and Clinical Microbiology, 3: 255-60.
Kumar Y, Singh V, Kumar G, Gupta NK, & Tahlan A K.  2019. Serovar diversity of Salmonella among poultry. The Indian Journal of Medical Research, 150: 92-95. DOI: 10.4103/ijmr. IJMR_1798_17
Lee HJ, Youn SY, Jeong OM, Kim JH, Kim DW, Jeong JY, Kwon YK & Kang MS. 2019. Sequential transmission of salmonella in the slaughtering process of chicken in Korea. Journal of food Science,  84: 871-876. DOI: 10.1111/1750-3841.14493
Li B & Webster TJ. 2018. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36: 22-32. DOI: 10.1002/jor.23656
Libera K, Konieczny K, Grabska J, Szopka W, Augustyniak A & Pomorska-Mól M. 2022. Selected Livestock-Associated Zoonoses as a Growing Challenge for Public Health. Infectious Disease Reports, 14: 63–81. DOI: 10.3390/idr14010008
Lin CL, Chiu CH, Chu C, Huang YC, Lin TY & Ou JT. 2007. A multiplex polymerase chain reaction method for rapid identification of Citrobacter freundii and Salmonella species, including Salmonella Typhi. Journal of Microbiology, Immunology, and Infection, 40: 222-6.
Marchello CS, Carr SD & Crump JA. 2020. A Systematic Review on Antimicrobial Resistance among Salmonella Typhi Worldwide. The American Journal of Tropical Medicine and Hygiene, 103: 2518-2527. DOI: 10.4269/ajtmh.20-0258
Martins M, McCusker MP, Viveiros M, Couto I, Fanning S, Pagès JM & Amaral L. 2013. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. The Journal of Veterinary Medical Science, 7: 72-82. DOI: 10.2174/1874285801307010072
Matayoshi M, Kitano T, Sasaki T & Nakamura M. 2015. Resistance phenotypes and genotypes among multiple-antimicrobial-resistant Salmonella enterica subspecies enterica serovar Choleraesuis strains isolated between 2008 and 2012 from slaughter pigs in Okinawa Prefecture, Japan. The Journal of Veterinary Medical Science, 77: 705-10. DOI: 10.1292/ jvms.14-0683
Mc Millan EA, Wasilenko JL, Tagg KA, Chen JC Simmons M, Gupta SK, Tillman GE, Folster J, Jackson CR & Frye JG. 2020. Carriage and gene content variability of the pesi-like plasmid associated with salmonella infantis recently established in United States poultry production. Genes, 11:1516. DOI: 10.3390/genes11121516
Medeiros MA, Oliveira DC, Rodrigues Ddos P & Freitas DR. 2011. Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Revista Panamericana de Salud Publica, 30: 555-60. DOI: 10.1590/s1020-49892011001200010
Mejía L, Medina JL, Bayas R, Salazar CS, Villavicencio F, Zapata S & Vinueza-Burgos C. 2020. Genomic epidemiology of salmonella infantis in Ecuador: from poultry farms to human infections. Frontiers in Veterinary Science, 7: 547891. DOI: 10.3389/fvets.2020. 547891
Mendonça EP, de Melo RT, Nalevaiko PC, Monteiro GP, Fonseca BB, Galvão NN, Giombelli A & Rossi DA. 2019. Spread of the serotypes and antimicrobial resistance in strains of Salmonella spp. isolated from broiler. Brazilian Journal of Microbiology, 50: 515-22. DOI: 10.1007/s42770-019-00054-w
Mirzaie S, Hassanzadeh M & Ashrafi I. 2010. Identification and characterization of Salmonella isolates from captured house sparrows. Turkish Journal of Veterinary and Animal Science, 34: 181- 86. DOI:10.3906/vet-0810-43
Moradi A, Karami A, Hagh Nazari A, Ahmadi Z, Soroori Zanjani R & Javadi S. 2009. Comparison of the PCR and LAMP techniques in the diagnosis of salmonella infection. Journal of Advances in Medical and Biomedical Research, 17: 65-77.
Moradi Bidhendi S. 2016. A review of studies on isolation, diagnosis and antimicrobial resistance of Salmonella in Iran. Veterinary Researches and Biological Products, 4: 28-30.
Moradi Bidhendi S, Alaei F, Khaki P & Ghaderi R. 2015. Identification of Avian Salmonella Isolates by PCR-RFLP Analysis of a fliC Gene Fragment. Archives of Razi Institute, 70: 1-6. DOI: 10.7508/ARI.2015.01.001
Mori T, Okamura N, Kishino K, Wada S, Zou B, Nanba T & Ito T. 2018. Prevalence and antimicrobial resistance of salmonella serotypes isolated from poultry meat in Japan. Food Safety, 6: 126-29. DOI: 10.14252/ foodsafetyfscj.2017019
Naderi Mozajin M, Khaki P & Noorbakhsh N. 2018. Antibiotic resistance of Salmonella enterica producing Extended-spectrum B-lactamases (ESBLs) type CMY-2, in poultry. Journal of Gorgan University of Medical Sciences, 20: 109-15.
Nair S, Patel V, Hickey T Maguire C, Greig DR, Lee W, Godbole G, Grant K & Chattaway MA. 2019.  Real-Time PCR assay for differentiation of typhoidal and nontyphoidal salmonella. Journal of Clinical Microbiology, 57:e00167-19. DOI: 10.1128/JCM.00167-19
Pate M, Mičunovič J, Golob M, Vestby LK & Ocepek M. 2019. Salmonella infantis in broiler flocks in Slovenia: The prevalence of multidrug resistant strains with high genetic homogeneity and low biofilm-forming ability. BioMed Research International, 2019: 4981463. DOI: 10.1155/2019/4981463
Park HR, Kim DM, Yun NR & Kim CM. 2019. Identifying the mechanism underlying treatment failure for Salmonella Paratyphi A infection using next-generation sequencing - a case report. BMC Infectious Diseases. 26;19: 191. DOI: 10.1186/s12879-019-3821-x
Prusak-Sochaczewski E & Luong JH. 1989. An improved ELISA method for the detection of Salmonella Typhimurium. The Journal of Applied Bacteriology, 66: 127-35. DOI: 10.1111/j.1365-2672.1989.tb02462.x
Rahmani M, Peighambari SM, Svendsen CA, Cavaco LM, Agersø Y & Hendriksen RS. 2013. Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran. BMC Veterinary Research, 9: 66. DOI: 10.1186/1746-6148-9-66
Rajagopal R & Mini M. 2013. Outbreaks of salmonellosis in three different poultry farms of Kerala, India. Asian Pacific Journal of Tropical Biomedicine, 3: 496-500. DOI: 10.1016/S2221-1691(13)60103-3
Rementeria A, Vivanco AB, Ramirez A, Hernando FL, Bikandi J, Herrera-León S, Echeita A & Garaizar J. 2009. Characterization of a monoclonal antibody directed against Salmonella enterica serovar Typhimurium and serovar. Applied and Environmental Microbiology, 75: 1345-54. DOI: 10.1128/ AEM.01597-08
Rowe-Magnus DA, Guerout AM, Ploncard P, Dychinco B, Davies J & Mazel D. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proceedings of the National Academy of Sciences of the United States of America, 98: 652-57. DOI: 10.1073/pnas.98.2.652
Saadati M, Ghorbani N, Barati B, Nazariyan S, Shirazi M, Shirazi MB, Shirzad H & Nakhaei Sistani R. 2008. Identification of Salmonella Typhi based on ViaB gene by PCR. Journal of Sabzevar University of Medical, 16: 221-27.
Salehi M, Anamnam M & Mosavari N. 2008. Accurate detection and differentiation of Salmonella Enteritidis isolates from farms and conservation of Iranian birds by using the Multiplex PCR. Microbial Biotechnology, 12: 35-42.
Salehi TZ, Tadjbakhsh H, Atashparvar N, Nadalian MG & Mahzounieh MR. 2007. Detection and identification of Salmonella Typhimurium in bovine diarrhoeic fecal samples by immunomagnetic separation and multiplex PCR assay. Zoonoses Public Health, 54: 231-6. DOI: 10.1111/j.1863-2378.2007.01061.x
Sánchez-Salazar E, Gudiño ME, Sevillano G, Zurita J, Guerrero-López R, Jaramillo K & Calero-Cáceres W. 2020. Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador. Journal of Applied Microbiology, 128(5), 1347-1354. DOI: 10.1111/jam.14562
Shah DH, Paul NC, Sischo WC, Crespo R & Guard J. 2017. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Science, 96, 687-702. DOI: 10.3382/ps/pew342  
Shi C, Singh P, Ranieri ML, Wiedmann M & Moreno Switt AI. 2015. Molecular methods for serovar determination of Salmonella. Critical Reviews in Microbiology, 41: 309-25.
Singer RSو Finch R, Wegener HC, Bywater R, Walters J & Lipsitch M. 2003. Antibiotic resistance--the interplay between antibiotic use in animals and human beings. The Lancet Infectious Diseases, 3: 47-51. DOI: 10.3109/1040841X.2013.837862
Souza AIS, Saraiva MMS, Casas MRT, Oliveira GM, Cardozo MV, Benevides VP, Barbosa FO, Freitas Neto OC, Almeida AM & Berchieri A Junior. 2020. High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS One, 15: e0230676. DOI: 10.1371/journal.pone.0230676
Stavnsbjerg C, Frimodt-Møller, N, Moser C & Bjarnsholt T. 2017. Comparison of two commercial broad-range PCR and sequencing assays for identification of bacteria in culture-negative clinical samples. BMC Infectious Diseases, 17: 233. DOI: 10.1186/s12879-017-2333-9
Tate H, Folster JP, Hsu CH, Chen J, Hoffmann M, Li C, Morales C, Tyson GH, Mukherjee S, Brown AC, Green A, Wilson W, Dessai U, Abbott J, Joseph L, Haro J, Ayers S, McDermott PF & Zhao S. 2017. Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing salmonella enterica serovar infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrobial Agents and Chemotherapy, 61: e00488-17. DOI: 10.1128/ AAC.00488-17
VT Nair D, Venkitanarayanan K & Kollanoor Johny A. 2018. Antibiotic-resistant salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7: 167. DOI: 10.3390/foods7100167
Vinueza-Burgos C, Baquero M, Medina J & De Zutter L. 2019. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. International Journal of Food Microbiology, 299: 1-7. DOI: 10.1016/j.ijfoodmicro. 2019.03.014
Vinueza-Burgos C, Cevallos M, Ron-Garrido L, Bertrand S & De Zutter L. 2016. Prevalence and diversity of salmonella serotypes in Ecuadorian broilers at slaughter age. PLoS One., 11: e0159567. DOI: 10.1371/journal.pone.0159567
Wang YU, Pettengill J, Pightling A, Timme R, Allard M, Strain E & Rand H. 2018. Genetic diversity of salmonella and listeria isolates from food facilities. Journal of Food Protection, 81: 2082-2089. DOI: 10.4315/0362-028X.JFP-18-093
 Wajid M, Saleemi MK, Sarwar Y & Ali A. 2019. Detection and characterization of multidrug-resistant Salmonella Enterica serovar Infantis as an emerging threat in poultry farms of Faisalabad, Pakistan. Journal of Applied Microbiology, 127: 248-61. DOI: 10.1111/ jam.14282
Wei S, Chelliah R, Rubab M, Oh DH, Uddin MJ & Ahn J. 2019. Bacteriophages as Potential Tools for Detection and Control of Salmonella spp. in Food Systems. Microorganisms, 7. DOI: 10.3390/microorganisms7110570
Wei X, You L, Wang D, Huang H, Li S & Wang D. 2019. Antimicrobial resistance and molecular genotyping of Salmonella Enterica serovar Enteritidis clinical isolates from Guizhou province of Southwestern China. PLoS One, 14: e0221492. DOI: 10.1371/journal.pone.0221492
Wu W, Li J, Pan D, Li J, Song S, Rong M, Li Z, Gao J & Lu J. 2014. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium. ACS Applied Materials & Interfaces, 6: 16974-81. DOI: 10.1021/am5045828.
Yang L, Li W, Jiang GZ, Zhang WH, Ding HZ, Liu YH, Zeng ZL & Jiang HX. 2017. Characterization of a P1-like bacteriophage carrying CTX-M-27 in Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Scientific Reports, 40710. DOI: 10.1038/srep40710
Yang Q, Domesle KJ, Wang, F & Ge B. 2016. Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time. BMC Microbiology, 16: 112. DOI: 10.1186/s12866-016-0730-7.
Zhang AN, Li LG, Ma L, Gillings MR, Tiedje JM & Zhang T. 2018. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome, 6:130. DOI: 10.1186/s40168-018-0516-2.