Black Soldier Fly (Hermetia illucens): A Proteinous Substitution of Soybean and Fish Meal for Broiler and Layer Chicken: A Review

Document Type : Review

Authors

1 Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Bangladesh

2 Department of Parasitology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Bangladesh

Abstract

Protein source feed components are particularly important in broiler and layer feed formulation. Protein-rich insects may be the greatest substitute for protein-rich feed items such as fish and soybean meals. The black soldier fly (BSF) (Hermetia illucens) is an excellent example of an organism that can transform organic waste into protein, lipids, chitin, and other substances. Black Soldier Fly larvae (BSFL) have 42% crude protein, 29% fat, and 23% moisture content on a dry matter (DM) basis. Without specific infrastructure, commercial manufacturing of BSF is achievable. BSF could be used in poultry feed to help reduce pollution. A buildup of organic wastes may result in a possible pollution issue but BSF can transform a wide range of organic waste into a source of protein for poultry. Moreover, the most economical diets were those that had 25% and 100% of Black Soldier Fly Larvae Meal (BSFLM), respectively. The most significant benefit of BSF as a chicken feed ingredient is that it might be a sustainable protein source and a cost-effective replacement for high-cost protein feedstuffs. The importance of the BSF as a potential source of organic protein for broiler and layer chicken production is highlighted in this review of the literature.

Keywords


  1. Abd El-Hack ME, Shafi ME, Alghamdi WY, Abdelnour SA, Shehata AM, Noreldin AE, Ashour EA, Swelum AA, Al-Sagan AA, Alkhateeb M, Taha AE, Abdel-Moneim AME, Tufarelli V & Ragni M. 2020. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: a comprehensive review. Agriculture, 10(8): Article 8. DOI: 10.3390/agriculture10080339

    Agunbiade JA, Adeyemi OA, Ashiru OM, Awojobi HA, Taiwo AA, Oke DB & Adekunmisi AA. 2007. Replacement of fish meal with Maggot meal in cassava-based layers' diets. The Journal of Poultry Science, 44(3): 278–282. DOI: 10.2141/jpsa.44.278

    Ayieko M, Oriaro V & Nyambuga IA. 2010. Processed products of termites and lake flies: improving entomophagy for food security within the Lake Victoria region. African Journal of Food, Agriculture, Nutrition and Development, 10(2).

    Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A & Pérez-Bañón C. 2014. The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201. DOI: 10.1016/j.aquaculture.2013.12.024

    Bedford A & Gong J. 2018. Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2): 151–159. DOI: 10.1016/j.aninu.2017.08.010

    Bejaei M & Cheng KM. 2020. The effect of including full-fat dried black soldier fly larvae in laying hen diet on egg quality and sensory characteristics. Journal of Insects as Food and Feed, 6(3): 305–314. DOI: 10.3920/JIFF2019.0045

    Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA & Mameri N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29: 48–56. DOI: 10.1016/j.foodhyd.2012.02.013

    Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F, Chiariotti L, Nizza A, Lembo F & Fioretti A. 2017. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Scientific Reports, 7(1): 16269. DOI: 10.1038/s41598-017-16560-6

    Bosch G, Zhang S, Oonincx DGAB & Hendriks WH. 2014. Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, 3: e29. DOI: 10.1017/jns.2014.23

    Bukkens SG. 1997. The nutritional value of edible insects. Ecology of Food and Nutrition, 36: 287–319. DOI: 10.1080/03670244.1997.9991521

    Caligiani A, Marseglia A, Leni G, Baldassarre S, Maistrello L, Dossena A & Sforza S. 2018. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Research International, 105: 812–820. DOI: 10.1016/j.foodres.2017.12.012

    Chadd C. Future trends and developments in poultry nutrition. In Proceedings of the Poultry in the 21st century: Avian influenza and beyond. In Proceedings of the International Poultry Conference, Bangkok, Thailand, 5–7 November 2007.

    Cheng V, Shoveller AK, Huber LA & Kiarie EG. 2023. Comparative protein quality in black soldier fly larvae meal vs. Soybean meal and fish meal using classical protein efficiency ratio (PER) chick growth assay model. Poultry Science, 102(1): 102255. DOI: 10.1016/j.psj.2022.102255

    Chu X, Li M, Wang G, Wang K, Shang R, Wang Z & Li L. 2020. Evaluation of the low inclusion of full-fatted hermetia illucens larvae meal for layer chickens: growth performance, nutrient digestibility, and gut health. Frontiers in Veterinary Science, 7. DOI: 10.3389/fvets.2020.585843

    Chung AYC, Chey VK, Speight MR, Eggleton P & Hammond PM. 2002. A survey on defoliation and phytophagous insects in four habitat types in Sabah, Malaysia. Journal of Tropical Forest Science, 14(1): 116–130.

    Costa-Neto EM. 2014. Insects as human food: an overview. Amazônica - Revista de Antropologia, 5(3): Article 3. DOI: 10.18542/amazonica.v5i3.1564

    Cullere M, Schiavone A, Dabbou S, Gasco L & Dalle Zotte A. 2019. Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia Illucens L.) larvae fat as alternative fat source. Animals, 9(4): Article 4. DOI: 10.3390/ani9040140

    Cullere M, Tasoniero G, Giaccone V, Miotti-Scapin R, Claeys E, Smet SD & Zotte AD. 2016. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10(12): 1923–1930. DOI: 10.1017/S1751731116001270

    Cutrignelli MI, Messina M, Tulli F, Randazzo B, Olivotto I, Gasco L, Loponte R & Bovera F. 2018. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Research in Veterinary Science, 117: 209–215. DOI: 10.1016/j.rvsc.2017.12.020

    Dabbou S, Gai F, Biasato I, Capucchio MT, Biasibetti E, Dezzutto D, Meneguz M, Plachà I, Gasco L & Schiavone A. 2018. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. Journal of Animal Science and Biotechnology, 9(1): 49. DOI: 10.1186/s40104-018-0266-9

    De Marco M, Martínez S, Hernandez F, Madrid J, Gai F, Rotolo L, Belforti M, Bergero D, Katz H, Dabbou S, Kovitvadhi A, Zoccarato I, Gasco L & Schiavone A. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology, 209: 211–218. DOI: 10.1016/j.anifeedsci.2015.08.006

    Diener S, Zurbrügg C & Tockner K. 2009. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research, 27(6): 603-610. DOI: 10.1177/0734242X09103838

    EFSA, 2015. The 2015 European Union report on pesticide residues in food | EFSA. https://www.efsa.europa.eu/en/efsajournal/pub/4791

    Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S & Lalander C. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Management, 102: 40–47. DOI: 10.1016/j.wasman.2019.10.014

    FAO. 2020. Food and Agriculture Organization of the United Nations, Department of Economic and Social Affairs, Population Division. Feeding the World in 2050. Available online: http://www.fao.org/tempref/docrep/fao/meeting/018/k6021e.pdf 

    Gariglio M, Dabbou S, Crispo M, Biasato I, Gai F, Gasco L, Piacente F, Odetti P, Bergagna S, Plachà I, Valle E, Colombino E, Capucchio MT & Schiavone A. 2019. Effects of the dietary inclusion of partially defatted black soldier fly (Hermetia illucens) meal on the blood chemistry and tissue (spleen, liver, thymus, and bursa of fabricius) histology of muscovy ducks (Cairina moschata domestica). Animals, 9(6): Article 6. DOI: 10.3390/ani9060307

    Hanboonsong Y. 2010. Edible insects and associated food habits in Thailand. Forest insects as food: humans bite back, 173: 182.

    Heuel M, Sandrock C, Leiber F, Mathys A, Gold M, Zurbrüegg C, Gangnat IDM, Kreuzer M & Terranova M. 2022. Black soldier fly larvae meal and fat as a replacement for soybeans in organic broiler diets: Effects on performance, body N retention, carcase and meat quality. British Poultry Science, 63(5): 650–661. DOI: 10.1080/00071668.2022.2053067

    Hu S, Wang Y, Wen X, Wang L, Jiang Z & Zheng C. 2018. Effects of low-molecular-weight chitosan on the growth performance, intestinal morphology, barrier function, cytokine expression and antioxidant system of weaned piglets. BMC Veterinary Research, 14(1): 215. DOI: 10.1186/s12917-018-1543-8

    Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW & Park BS. 2009. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. Journal of Environmental Biology, 30(4): 609–614.

    Ipema AF & Bolhuis JE. 2022. How black soldier fly larvae (Hermetia illucens) benefit broiler welfare. WUR. https://www.wur.nl/en/article/how-black-soldier-fly-larvae-hermetia-illucens-benefit-broiler-welfare.html

    Jocken JWE, González Hernández MA, Hoebers NTH, van der Beek CM, Essers YPG, Blaak EE & Canfora EE. 2018. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Frontiers in Endocrinology, 8. DOI: 10.3389/fendo.2017.00372

    Kawasaki K, Hashimoto Y, Hori A, Kawasaki T, Hirayasu H, Iwase S, Hashizume A, Ido A, Miura C, Miura T, Nakamura S, Seyama T, Matsumoto Y, Kasai K & Fujitani Y. 2019. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals, 9(3): Article 3. DOI: 10.3390/ani9030098

    KouÅ™imská L & Adámková A. 2016. Nutritional and sensory quality of edible insects. NFS Journal, 4: 22–26.

    Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A & Schulz C. 2012. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute — Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364: 345–352. DOI: 10.1016/j.aquaculture.2012.08.041

    Latunde-Dada GO, Yang W & Vera Aviles M. 2016. In vitro iron availability from insects and sirloin beef. J Agric Food Chemistry, 64: 8420–8424. DOI: 10.1021/acs.jafc.6b03286

    Lee CG, Da Silva CA, Lee JY, Hartl D & Elias JA. 2008. Chitin regulation of immune responses: An old molecule with new roles. Current Opinion in Immunology, 20(6): 684–689. DOI: 10.1016/j.coi.2008.10.002

    Li Q, Zheng L, Cai H, Garza E, Yu Z & Zhou S. 2011b. From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel, 90(4): 1545–1548. DOI: 10.1016/j.fuel.2010.11.016

    Li Q, Zheng L, Qiu N, Cai H, Tomberlin JK & Yu Z. 2011a. Bioconversion of dairy manure by black soldier fly (Diptera: stratiomyidae) for biodiesel and sugar production. Waste Management, 31(6): 1316–1320. DOI: 10.1016/j.wasman.2011.01.005

    Liaqat F & Eltem R. 2018. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydrate Polymers, 184: 243–259. DOI: 10.1016/j.carbpol.2017.12.067

    Liu X, Chen X, Wang H, Yang Q, ur Rehman K, Li W, Cai M, Li Q, Mazza L & Zhang J. 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE, 12: e0182601.

    Makkar HP, Tran G, Heuze V & Ankers P. 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197: 1–33. DOI: 10.1016/j. anifeedsci.2014.07.008

    Marono S, Loponte R, Lombardi P, Vassalotti G, Pero ME, Russo F, Gasco L, Parisi G, Piccolo G, Nizza S, Di Meo C, Attia YA & Bovera F. 2017. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Science, 96(6): 1783–1790. DOI: 10.3382/ps/pew461

    Mateos-Aparicio I, Mengíbar M & Heras A. 2016. Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydrate Polymers, 137: 617–624. DOI: 10.1016/j.carbpol.2015.11.011

    Matin N, Utterback P & Parsons CM. 2021. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poultry Science, 100(7): 101146. DOI: 10.1016/j.psj.2021.101146

    Maurer V, Holinger M, Amsler Z, Früh B, Wohlfahrt J, Stamer A & Leiber F. 2016. Replacement of soybean cake by Hermetia illucens meal in diets for layers. Journal of Insects as Food and Feed, 2(2): 83–90. DOI: 10.3920/JIFF2015.0071

    Mei Y, Dai X, Yang W, Xu X & Liang Y. 2015. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum. International Journal of Biological Macromolecules, 77: 330–335. DOI: 10.1016/j.ijbiomac.2015.03.042

    Meyer-Rochow VB & Chakravorty J. 2013. Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Applied Entomology and Zoology, 48: 105-112. DOI: 10.1007/s13355-013-0171-9

    Mlcek J, Rop O, Borkovcova M & Bednarova M. 2014. A comprehensive look at the possibilities of edible insects as food in Europe–a review. Polish Journal of Food and Nutrition Sciences, 64: 147–157. DOI: 10.2478/v10222-012-0099-8

    Moula N, Scippo ML, Douny C, Degand G, Dawans E, Cabaraux JF, Hornick JL, Medigo RC, Leroy P, Francis F & Detilleux J. 2018. Performances of local poultry breed fed black soldier fly larvae reared on horse manure. Animal Nutrition, 4(1): 73–78. DOI: 10.1016/j.aninu.2017.10.002

    Mwaniki Z, Neijat M & Kiarie E. 2018a. Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn–soybean meal diet fed to Shaver White Leghorns from wk 19 to 27 of age. Poultry Science, 97(8): 2829–2835. DOI: 10.3382/ps/pey118

    Mwaniki Z, Neijat M & Kiarie E. 2018b. Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn–soybean meal diet fed to Shaver White Leghorns from wk 19 to 27 of age. Poultry Science, 97(8): 2829–2835. DOI: 10.3382/ps/pey118

    Mwaniki Z, Shoveller AK, Huber LA & Kiarie EG. 2020. Complete replacement of soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding program (28–43 wks of age): Impact on egg production, egg quality, organ weight, and apparent retention of components. Poultry Science, 99(2): 959–965. DOI: 10.1016/j.psj.2019.10.032

    Nery J, Gasco L, Dabbou S & Schiavone A. 2018. Protein composition and digestibility of black soldier fly larvae in broiler chickens revisited according to the recent nitrogen-protein conversion ratio. Journal of Insects as Food and Feed, 4(3): 171–177. DOI: 10.3920/JIFF2018.0006

    Newton GL, Sheppard DC, Watson DW, Burtle GJ, Dove CR, Tomberlin JK & Thelen EE. 2005. The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In: Symposium on the State of the Science of Animal Manure and Waste Management, vols. 5–7.

    Nguyen TTX, Tomberlin JK & Vanlaerhoven S. 2015. Ability of black soldier fly (Diptera: stratiomyidae) larvae to recycle food waste. Environmental Entomology, 44(2): 406–410. DOI: 10.1093/ee/nvv002

    Niu S, Yang L, Zuo H, Zheng J, Weng S, He J & Xu X. 2018. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation. Developmental & Comparative Immunology, 85: 161–169. DOI: 10.1016/j.dci.2018.04.013

    Oonincx DG, Van Broekhoven S, Van Huis A, van Loon JJ. 2015. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 23: 10(12):e0144601. DOI: 10.1371/journal.pone.0144601

    Pretorius Q. 2011. The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production [Thesis, Stellenbosch : Stellenbosch University]. https://scholar.sun.ac.za:443/handle/10019.1/46243

    Ruhnke I, Normant C, Campbell DLM, Iqbal Z, Lee C, Hinch GN & Roberts J. 2018. Impact of on-range choice feeding with black soldier fly larvae (Hermetia illucens) on flock performance, egg quality, and range use of free-range laying hens. Animal Nutrition, 4(4): 452–460. DOI: 10.1016/j.aninu.2018.03.005

    Salomone R, Saija G, Mondello G, Giannetto A, Fasulo S & Savastano D. 2017. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. Journal of Cleaner Production, 140: 890-905. DOI: 10.1016/j.jclepro.2016.06.154

    Schiavone A, Cullere M, De Marco M, Meneguz M, Biasato I, Bergagna S, Dezzutto D, Gai F, Dabbou S, Gasco L & Dalle Zotte A. 2017. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Italian Journal of Animal Science, 16(1): 93–100. DOI: 10.1080/1828051X.2016.1249968

    Schiavone A, Dabbou S, Marco MD, Cullere M, Biasato I, Biasibetti E, Capucchio MT, Bergagna S, Dezzutto D, Meneguz M, Gai F, Zotte AD & Gasco L. 2018. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12(10): 2032–2039. DOI: 10.1017/S1751731117003743

    Schiavone A, Dabbou S, Petracci M, Zampiga M, Sirri F, Biasato I, Gai F & Gasco L. 2019. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal, 13(10): 2397–2405. DOI: 10.1017/S1751731119000685

    Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M, Madrid J, Hernandez F, Rotolo L, Costa P, Gai F & Gasco L. 2017. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. Journal of Animal Science and Biotechnology, 8(1): 51. DOI: 10.1186/s40104-017-0181-5

    Schluter O, Rumpold B, Holzhauser T, Roth A, Vogel RF, Quasigroch W, Vogel S, Heinz V, Jager H, Bandick N, Kulling A, Knorr D, Steinberg P, Engel KH. 2017. Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research, 61: 1600520. DOI: 10.1002/mnfr.201600520

    Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C & St-Hilaire S. 2011. Sensory analysis of rainbow trout, oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. Journal of the World Aquaculture Society, 42(1): 34–45. DOI: 10.1111/j.1749-7345.2010.00441.x

    Secci G, Bovera F, Nizza S, Baronti N, Gasco L, Conte G, Serra A, Bonelli A & Parisi G. 2018. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animal, 12: 2191–2197.

    Siva Raman S, Stringer LC, Bruce NC & Chong CS. 2022. Opportunities, challenges and solutions for black soldier fly larvae-based animal feed production. Journal of Cleaner Production, 373: 133802. DOI: 10.1016/j.jclepro.2022.133802

    Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M, De Clercq P & De Smet S. 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Animal Feed Science and Technology, 235: 33–42. DOI: 10.1016/j. anifeedsci.2017.08.012

    St-Hilaire S, Cranfill K, Mcguire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C & Irving S. 2007a. Fish offal recycling by the black soldier fly produces a food stuff high in omega-3 fatty acids. Journal of the World Aquaculture Society, 38: 309-313. DOI: 10.1111/j.1749-7345.2007.00101.x

    St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosley EE, Hardy RW & Sealey W. 2007b. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. Journal of the World Aquaculture Society, 38: 59-67. DOI: 10.1111/j.1749-7345.2006.00073.x

    1. 2019. United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights. Available online: Population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

    Van Huis A. 2013. Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, 58(1): 563–583. DOI: 10.1146/annurev-ento-120811-153704

    Yen AL. 2009. Edible insects: Traditional knowledge or western phobia?. Entomological research, 39(5): 289-298.

    Zheng L, Hou Y, Li W, Yang S, Li Q & Yu Z. 2012. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 47: 225-229. DOI: 10.1016/j.energy.2012.09.006