Detoxification of Aflatoxin B1‎ by Isolating and Screening Bacillus species from the Gastrointestinal Tract of Broilers

Document Type : Original Paper

Authors

1 Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

2 Department of Microbiology, Medical School, University of Medical Sciences, Hamedan, Iran.

Abstract

Aflatoxins, which are widely detected in cereals, are capable of causing diseases in humans and animals. The aim of this study was to isolate and screen Bacillus species. as direct-fed microbials to the degrading of Aflatoxin B1 (AFB1) in an in vitro condition. Ten hundred Bacillus isolates were obtained from broilers' gastrointestinal tracts. Probiotic characteristics such as antibacterial activity, antibiotic susceptibility, acid and bile tolerance, aggregation and coaggregation assays, cell surface hydrophobicity, biofilm formation and extracellular enzyme production were evaluated. The reduction of AFB1 concentration was carried out with high-performance liquid chromatography (HPLC). Residual AFB1 toxin in the final product was detected. The morphological and biological assayed followed by analysis of 16S rRNA gene sequence were carried out for identification of Bacillus species. Out of 100 bacillus species, six isolates, including MA57, MA58, MA71, MA73, MA81 and MA82 gamma hemolysis. About two Bacillus strains exhibited maximum antimicrobial activity. Isolates showed a good tolerance to acid and bile salt conditions. The aggregation and coaggregation activity of MA82 was higher than MA71. Both isolates were able to strongly biofilm formation. Extracellular enzyme production of the two tested Bacillus species was various. The MA82 was more effective in biodegrading AFB1 (up to 75%). Analyzing the 16S rRNA gene sequence showed that it belonged to the strain of Bacillus species MBIA2.40 (92.98% Identification). These results suggest that Bacillus sp. MBIA2.40 should not only be used as probiotics but also may be as adsorptive for aflatoxin B1.

Keywords


Abd-Elhalem BT, El-Sawy M, Gamal RF & Abou-Taleb KA. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Annals of Agricultural Science, 60(2): 193-202. DOI: 10.1016/j.aoas.2015.06.001
Alshannaq A & Yu JH. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Public Health, 14(6): 1-20. DOI: 10.3390/ijerph14060632
Azirah MN, Marini I, Murni K, Harmin S & Ina-Salwany M. 2016. Extracellular enzyme production of probiotic bacillus JAQ04 and micrococcus JAQ07 isolated from tiger grouper (Epinephelus fuscoguttatus). International Journal of Chemical, Environmental & Biological Sciences, 4(1): 57-60.
Bagherzadeh Kasmani F, Karimi Torshizi MA, Allameh A & Shariatmaari F. 2012. A novel aflatoxin-binding Bacillus probiotic: Performance, serum biochemistry, and immunological parameters in Japanese quail. Journal of Poultry Science, 91(8): 1846-1853.  DOI: 10.3382/ps.2011-01830
Chang X, Wu Z, Wu S, Dai Y & Sun C. 2015. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Additive Contamination Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 32(4): 564–571. DOI: 10.1080/19440049.2014.991948
Cheng S, Wu T, Zhang H, Sun Z, Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Wu X & Jia H. 2023. Mining Lactonase Gene from Aflatoxin B1-Degrading Strain Bacillus Megaterium and Degrading Properties of the Recombinant Enzyme. Journal of Agricultural Food Chemistry, 71(51): 20762–20771. DOI: 10.1021/acs.jafc.3c05725
Chlebicz A & Slizewska K. 2020. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicro, 12(1): 289-301. DOI: 10.1007/s12602-018-9512-x
Collado MC, Meriluoto J & Salminen S. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. Europe Food Research Technology, 226(5): 1065-1073. DOI: 10.1007/s00217-007-0632-x 
Conway P, Gorbach S & Goldin B. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science, 70: 1–12. DOI: 10.3168/jds.S0022-0302(87)79974-3
Del Re B, Sgorbati B, Miglioli M & Palenzola D. 2000. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacteriumlongum. Letter Applied Microbiology, 31(6): 438-42. DOI: 10.1046/j.1365-2672.2000.00845.x
Dosler S & Karaaslan E. 2014. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62: 32-37. DOI: 10.1016/j.peptides.2014.09.021
Emmanuel KT, Els VP, Bart H, Evelyne D, Els VH & Els D. 2020. Carry-over of some Fusarium mycotoxins in tissues and eggs of chickens fed experimentally mycotoxin-contaminated diets. Food Chemistry Toxicology, 145(111715): 1-9. DOI: 10.1016/j.fct.2020.111715
Ferreira CL, Grześkowiak L, Collado MC & Salminen S. 2011. In vitro evaluation of Lactobacillus gasseri strains of infant origin on adhesion and aggregation of specific pathogens. Journal of Food Protection, 74(9): 1482–1487. DOI: 10.4315/0362-028X.JFP-11-074
From C, Pukall R, Schumann P, Hormaza´bal V & Granum PE. 2005. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Applied Environtment Microbiology, 71(3): 1178–1183. DOI: 10.1128/AEM.71.3.1178-1183.2005
Gao X, Ma Q, Zhao L, Lei Y, Shan Y& Ji C. 2011. Isolation of Bacillus subtilis: screening for aflatoxins B1, M1 and G1 detoxification. Europe Food Research Technology, 232: 957-962. DOI: 10.1007/s00217-011-1463-3
Gilliland SE, Staley TE & Bush LJ. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. Journal of Dairy Science, 67(12): 3045–3051. DOI: 10.3168/jds.S0022-0302(84)81670-7
Gusils C, Chaia AP, Gonzalez S & Oliver G. 1999. Lactobacilli isolated from chicken intestines: potential use as probiotics. Journal of Food. Protection, 62(3): 252-256. DOI: 10.4315/0362-028x-62.3.252
Haque MA, Wang Y, Shen Z, Li X, Saleemi MK & He C. 2020. Mycotoxin Contamination and Control Strategy in Human, Domestic Animal and Poultry: A Review. Microbiology Pathology, 142: 104095. DOI: 10.1016/j.micpath.2020.104095
Hong HA, Le HD & Cutting SM. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Review, 29(4): 813–835 DOI: 10.1016/j.femsre.2004.12.001
Huang M, Guo J, Jia Y, Liao C, He L, Li J, Wei Y, Chen S, Chen J, Shang Ke, Guo R, Ding K & Yu Z. 2023. A Bacillus subtilis Strain ZJ20 with AFB1 Detoxification Ability: A Comprehensive Analysis. Biology, 12(9): 1195. DOI: 10.3390/biology12091195
Jain N, Mehata A & Bharti V. 2017. Screening, characterization, and in vitro evaluation of probiotic properties of Lactobacillus strains. Asian Journal of Pharmaceutical and Clinical Research, 10(8): 288-293. DOI: 10.22159/ajpcr.2017.v10i8.14233
Jin L, Ho Y, Abdullah N & Jalaludin S. 1998. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Letter Applied Microbiology, 27(3): 183–185. DOI: 10.1046/j.1472-765x.1998.00405.x
Jin LZ, Ho WY, Abdullah MA, Ali MA & Jalaludin S. 1996. Antagonistic effects of intestinal lactobacillus isolates on pathogens of chicken. Letter Appled Microbiology, 23(2): 67-71. DOI: 10.1111/j.1472-765x.1996.tb00032.x
Kiely LJ & Olson NF. 2000. The physicochemical surface characteristics of Lactobacillus casei. Food Microbiology, 17(3): 277-91. DOI: 10.1006/fmic.1999.0311
Koransky JR, Allen SD & Dowell VRJ. 1978. Use of ethanol for selective isolation of spore-forming microorganisms. Applied Environment Microbiology, 35(4): 762–765. DOI: 10.1128/aem.35.4.762-765.1978
Kumar V, Bahuguna A, Lee JS, Sood A, Han SS, Chun HS & Kim M. 2023. Degradation Mechanism of Aflatoxin B1 and Aflatoxin G1 by Salt Tolerant Bacillus Albus YUN5 Isolated from ‘Doenjang’, a Traditional Korean Food. Food Research International, 165: 112479. DOI: 10.1016/j.foodres.2023.112479
Latorre JD, Hernandez-Velasco X, Wolfenden RE, Vicente JL, Wolfenden AD, Menconi A, Bielke LR, Hargis BM & Tellez G. 2016. Evaluation and selection of bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. FrontVeterinary Science, 3: 1-9. DOI: 10.3389/fvets.2016.00095
Lee A, Cheng K.C & Liu JR. 2017. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS One, 12(8): e0182220. DOI: 10.1371/journal.pone.0182220
Mayra-Makinen A., Manninen M & Gyllenberg H. 1983. The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. Journal of Applied Bacteriology, 55(2): 241–245. DOI: 10.1111/j.1365-2672.1983.tb01321.x
Mosca CO, Moragues MD, Llovo J, Mosaid Al, Coleman ADC & Pontón J. 2003. Casein agar: a useful medium for differentiating Candida dubliniensis from Candida albicans. Journal of clinical Microbiology, 41(3): 1259-1262. DOI: 10.1128/JCM.41.3.1259-1262.2003
Niderkorn V, Morgavi DP, Aboab B, Lemaire M & Boudra H. 2009. Cell wall component and mycotoxin moietiesinvolved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal Applied Microbiology, 106(3): 977–985. DOI: 10.1111/j.1365-2672.2008.04065.x
Paneru D, Tellez-Isaias G, Arreguin-Nava MA, Romano N, Bottje WG, Asiamah E, Abdel-Wareth AAA & Lohakare J. 2023. Effect of fenugreek seeds and Bacillus- based direct-fed micribiaks on the growth performance, blood biochemical, and intestinal histomorphology of broiler chickens. Front Veterinary Science, 10:1298587. DOI: 10.3389/fvets.2023.1298587
Peltonen K, El-Nezami H, Salminen S & Ahokas J. 2000. Binding of aflatoxin B1 by probiotic bacteria. Journl of Science Food Agriculture, 80(13): 1942–1945. DOI: 10.1002/1097-0010(200010)80:13<1942::AID-JSFA741>3.0.CO;2-7
Rao KR, Vipin AV, Hariprasad P, Appaiah KA & Venkateswaran G. 2017. Biological detoxification of aflatoxin b1 by bacillus licheniformis cfr1. Food Control, 71: 234–241. DOI: 10.1016/j.foodcont.2016.06.040
Rosario GS, Juan DL, Xochitl HV, Amanda DW, Lisa RB, Anita M, Billy MH & Guillermo T. 2015. Isolation, screening and identification of Bacillus spp. as direct-fed microbialncandidates for aflatoxin B1 biodegradation. Asian Pacific Journal of Tropical Biomedicine, 5(9): 702-706. DOI: 10.1016/j.apjtb.2015.07.014
Sangare L, Zhao Y, Folly YME., Chang J, Li J, Selvarag JN, Xing F, Zhou L, Wang Y & Liu Y. 2014. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins 6(10): 3028-3040. DOI: 10.3390/toxins6103028
SAS Institute Inc. 2013. SAS/STAT User’s Guide: Version 9.4th edn. SAS Institute Inc. Cary, NC, USA.
Siahmoshteh F, Siciliano I, Banani H, Hamidi-Esfahani Z, Razzaghi-Abyaneh M, Gullino ML & Spadaro D. 2017. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology, 254(2): 47–53. DOI: 10.1016/j.ijfoodmicro.2017.05.011
Sudharhsan S, Senthilkumar S & Ranjith K. 2007. Physical and nutritional factors affecting the production of amylase from species of Bacillus isolated from spoiled food waste. African Journal Biotechnology, 6: 430-435. DOI: 10.5897/AJB2007.000-2025
Sumathi C, Mohana P, Dilli B & Sekaran G. 2011. Analysis of enzyme activities of the gut bacterial communities in Labeo rohita fed differentially treated animal fleshing diets. Journal of Microbial and Biochemical Technology, 3(5): 112-120. DOI: 10.4172/1948-5948.1000061
Ting W, Chang CH, Szonyi B & Gizachew D. 2020. Growth and aflatoxin B1, B2, G1, and G2 production by Aspergillus flavus and Aspergillus parasiticus on ground flax seeds (Linum usitatissimum). Journal of Food Protection, 83(6): 975–983.  DOI: 10.4315/JFP-19-539
Treagan L & Pulliam L. 1982. Medical microbiology laboratory procedures. W.B. Saunders Company Philadelphia. pp: 233-243.
Tuo Y, Yu H, Ai L, Wu Z, Guo B & Chen W. 2013. Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96(7): 4252-4257.  DOI: 10.3168/jds.2013-6547
Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C, Chen Y, Wei Y, He X, Zhao J, Han H, Sun M & Xiao K. 2020. Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy. Cell Death and Disease, 11(6): 1-16. DOI: 10.1038/s41419-019-2197-6