Teratogenic effect of Disodium 5’ Ribonucleotide (E635) on 15th day chick embryo Gallus gallus (Research note)

Document Type : Research Note

Authors

Department of Zoology, Shivaji University, Kolhapur-416004, Maharashtra, India

Abstract

Disodium 5' ribonucleotide (E635), commonly used as a food additive, may pose teratogenic risks. The study aimed to evaluate the teratogenicity of disodium 5’ ribonucleotide using chick embryos as an in vivo model. Fertilized chicken eggs were inoculated with LD50 dose of 0.05 µg/egg of disodium 5’ ribonucleotide on the 0th, 5th, and 10th days of embryonic development. The control group received 0.05 mL of distilled water on the 0th, 5th, and 10th days. After 15 days of incubation, embryos were examined for morphological abnormalities. The disodium 5’ ribonucleotide inoculated embryos exhibited significant developmental anomalies, including acrania, monophthalmia, bent toes, curved beak, scissor beak, omphalocele, and hematoma, compared to the control group. These abnormalities were categorized and analyzed through morphometric assessments to evaluate their severity. Data were subjected to statistical analysis using t-test to find out significance of developmental anomalies in dose induced group and control group animals. Anatomical changes indicated that disodium 5’ ribonucleotide exposure led to severe teratogenic effects in chick embryos, which has highlighted potential risks associated with its use as a food additive.

Keywords


Abbey M & Kua P. 2022. Environmental pollution as a causative factor of birth defects in the Niger Delta area of Nigeria. Journal of Dental and Medical Sciences, 21: 15-21. DOI: 10.9790/0853-2102161521
Abzhanov A & Tabin CJ. 2004. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Developmental biology, 273: 134-148. DOI: 10.1016/j.ydbio. 2004.05.028
Al-Qudsi F & Al-Jahdali A. 2012. Effect of monosodium glutamate on chick embryo development. Journal of American Science, 8: 499-509. DOI: 10.7537/marsjas081012.72
Andersson C, Gripenland J & Johansson J. 2015. Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections. Nature Protocols, 10: 1155-1164. DOI: 10.1038/nprot.2015.073
Bjørnstad S, Austdal LPE, Roald B, Glover JC & Paulsen RE. 2015. Cracking the egg: potential of the developing chicken as a model system for nonclinical safety studies of pharmaceuticals. Journal of Pharmacology and Experimental Therapeutics, 355: 386-396. DOI: 10.1124/jpet.115.227025
Calado AM & dos Anjos Pires M. 2018. An overview of teratology. Teratogenicity Testing: Methods and Protocols, Pages, 3-32. DOI: 10.1007/978-1-4939-7883-0_1
Campagnol PCB, dos Santos BA, Morgano MA, Terra NN & Pollonio MAR. 2011. Application of lysine, taurine, disodium inosinate and disodium guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl. Meat Science, 87: 239-243. DOI: 10.1016/j.meatsci.2010.10.018
Carmichael SL, Yang W, Ma C, Desrosiers TA, Weber K, Collins RT, Nestoridi E, Shaw GM & National Birth Defects Prevention Study. 2023. Oxidative balance scores and neural crest cell‐related congenital anomalies. Birth Defects Research, 115: 1151-1162. DOI: 10.1002/bdr2.2211
Doi T, Puri P, Bannigan J Thompson J. 2010. Msx1 and Msx2 gene expression is downregulated in the cadmium-induced omphalocele in the chick model. Journal of Pediatric Surgery, 45: 1187-1191. DOI: 10.1016/j.jpedsurg.2010.02.084
Fabre PJ, Leleu M, Mascrez B, Lo Giudice Q, Cobb J & Duboule D. 2018. Heterogeneous combinatorial expression of Hoxd genes in single cells during limb development. BMC Biology, 16: 1-15. DOI: 10.1186/s12915-018-0570-z
Farag MR, Khalil SR, Zaglool AW, Hendam BM, Moustafa AA, Cocco R, Di Cerbo A & Alagawany M. 2021. Thiacloprid induced developmental neurotoxicity via ROS-oxidative injury and inflammation in chicken embryo: the possible attenuating role of chicoric and rosmarinic acidsBiology, 10: 1-16. DOI: 10.3390/biology10111100
Gahalain N, Chaudhary J, Kumar A, Sharma S & Jain A. 2011. Lipid peroxidation: an overview. International Journal of Pharmaceutical Sciences and Research, 2: 2757-2766. DOI: 10.13040/IJPSR.0975-8232.2(11).2757-66
Garcia P, Wang Y, Viallet J & Macek Jilkova Z. 2021. The chicken embryo model: a novel and relevant model for immune-based studies. Frontiers in Immunology, 12: 1-16. DOI: 10.3389/fimmu.2021.791081
Hajeb P & Jinap S. 2015. Umami taste components and their sources in Asian foods. Critical Reviews in Food Science and Nutrition, 55: 778-791. DOI: 10.1080/10408398.2012.678422
Hansen JM. 2006. Oxidative stress as a mechanism of teratogenesis. Birth Defects Research Part C: Embryo Today: Reviews, 78: 293-307. DOI: 10.1002/bdrc.20085
Hashem MM, Abd-Elhakim YM, Abo-EL-Sooud K & Eleiwa MM. 2019. Embryotoxic and teratogenic effects of tartrazine in rats. Toxicological Research, 35: 75-81. DOI: 10.5487/TR.2019.35.1.075
Hussein M & Singh V. 2016. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. Journal of the Anatomical Society of India, 65: 83-89. DOI: 10.1016/j.jasi.2017.01.012
Jung JE & Koh E. 2016. Use of Monosodium L-Glutamate and Ribonucleotide Seasoning in Korean Processed Foods. Journal of the East Asian Society of Dietary Life, 26: 308-313. DOI: 10.17495/easdl.2016.8.26.4.308
Kanagaraju P., & Rathnapraba S. 2019. Effect of in-ovo injection of glucose and egg white protein on the production performance and gut histomorphometry of broiler chicken. Indian Journal of Animal Research, 53: 675-679. DOI: 10.18805/ijar.B-3555
Mallo M, Wellik DM & Deschamps J. 2010. Hox genes and regional patterning of the vertebrate body plan. Developmental Biology, 344: 7-15. DOI:10.1016/j.ydbio.2010.04.024
Mobarak YM & Al-Asmari MA. 2011. Endosulfan impacts on the developing chick embryos: morphological, morphometric and skeletal changes. International Journal of Zoological Research, 7: 107-127. DOI: 10.3923/ijzr.2011.107.127
Narkowicz S, Płotka J, Polkowska Ż, Biziuk M & Namieśnik J. 2013. Prenatal exposure to substance of abuse: a worldwide problem. Environment International, 54: 141-163. DOI:10.1016/j.envint.2013.01.011
Nihad ASM, Deshpande R, Kale VP, Bhonde RR, & Datar SP. 2018. Establishment of an in ovo chick embryo yolk sac membrane (YSM) assay for pilot screening of potential angiogenic and anti‐angiogenic agents. Cell Biology International, 42: 1474-1483. DOI: 10.1002/cbin.11051
Rosano A, Botto LD, Olney RS, Khoury MJ, Ritvanen A, Goujard J, Stoll C, Cocchi G, Merlob P, Mutchinick O, Cornel MC, Castilla EE, Martínez-Frías ML, Zampino G, Erickson JD & Mastroiacovo P. 2000. Limb defects associated with major congenital anomalies: clinical and epidemiological study from the International Clearinghouse for Birth Defects Monitoring Systems. American journal of medical genetics, 93: 110-116. DOI: 10.1002/1096-8628(20000717)93:2<110::aid-ajmg6>3.0.co;2-9
Salvaggio A, Antoci F, Messina A, Ferrante M, Copat C, Ruberto C, Scalisi EM, Pecoraro R & Brundo MV. 2018. Teratogenic effects of the neonicotinoid thiacloprid on chick embryos (Gallus gallus domesticus). Food and Chemical Toxicology, 118: 812-820. DOI: 10.1016/j.fct.2018.06.026
Sharikmaslat SI & Kamble NA. 2024. Determination of Lethal Dose of Disodium 5’ Ribonucleotide (E635) on Embryonic Development of Gallus gallus. Toxicology International, 31: 83-92. DOI: 10.18311/ti/2024/v31i1/35180
Smith SM, Flentke GR & Garic A. 2012. Avian models in teratology and developmental toxicology. Developmental Toxicology: Methods and Protocols. Pages, 85-103. DOI: 10.1007/978-1-61779-867-2_7
Stadtman ER & Levine RL. 2000. Protein oxidation. Annals of the New York Academy of Sciences, 899: 191-208. DOI: 10.1111/j.1749-6632.2000.tb06187.x
Surai PF. 2002. Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World's Poultry Science Journal, 58: 333-347. DOI: 10.1079/WPS20020026
Szabó R, Budai P, Juhász É, Major L & Lehel J. 2024. Potential Teratogenicity Effects of Metals on Avian Embryos. International Journal of Molecular Sciences, 25: 1-20. DOI: 10.3390/ijms251910662
Taha BA & Mohammed RH. 2022. Investigation the toxicity of compound insecticide (Acetamiprid and Thiamethioxam) on development of Ross 308 Broiler chick embryo. Journal of Education and            Science, 31: 123-136. DOI: 10.33899/edusj.2022.132403.1206
Talukdar D, Langthasa P, Barhoi D & Giri S. 2020. Smokeless tobacco ‘sadagura’and areca nut extract exposure induces extensive embryotoxicity in chick embryo, Gallus gallus domesticus. Toxicology and Environmental Health Sciences, 12: 55-63. DOI: 10.1007/s13530-020-00038-6
Thakur K, Singh D & Rajput R. 2022. Effects of food additives and preservatives and shelf life of the processed foods. Journal of Current Research in Food Science, 3: 11-22.
Thompson JM & Bannigan JG. 2007. Omphalocele induction in the chick embryo by administration of cadmium. Journal of Pediatric Surgery, 42: 1703-1709. DOI: 10.1016/j.jpedsurg.2007.05.026
Vergara MN & Canto-Soler MV. 2012. Rediscovering the chick embryo as a model to study retinal development. Neural Development, 7: 1-19. DOI: 10.1186/1749-8104-7-22
Wachholz G E, Rengel BD, Vargesson N & Fraga LR. 2021. From the farm to the lab: how chicken embryos contribute to the field of teratology. Frontiers in Genetics, 12: 1-11. DOI: 10.3389/fgene.2021.666726
Widelitz RB. 2008. Wnt signaling in skin organogenesis. Organogenesis, 4: 123-133. DOI: 10.4161/org.4.2.5859
Wojcik MH & Agrawal PB. 2020. Deciphering congenital anomalies for the next generation. Molecular Case Studies, 6: 1-9. DOI: 10.1101/mcs.a005504
Xie WY, Chen MJ, Jiang SG, Yan HC, Wang XQ & Gao CQ. 2020. Investigation of feather follicle morphogenesis and the expression of the Wnt/β-catenin signaling pathway in yellow-feathered broiler chick embryos. British Poultry Science, 61: 557-565. DOI: 10.1080/00071668.2020.1758302
Zhang X, Peng Y & Wu C. 2021. Chicken embryonic toxicity and potential in vitro estrogenic and mutagenic activity of carvacrol and thymol in low dose/concentrationFood and Chemical Toxicology, 150: 1-12. DOI: 10.1016/j.fct.2021.112038