In Vitro and In Vivo Evaluation of New Probiotic Lactobacillus Strains Isolated from Healthy and Colibacillosis diseased Broilers against Avian Pathogenic E.coli O78

Document Type : Original Paper

Authors

1 Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan

2 Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan

Abstract

This study compares healthy and colibacillosis-diseased broilers to determine if disease conditions promote the selection of stronger or equally potent probiotic Lactobacillus spp. A total of 120 putative Lactobacillus colonies were recovered from chicken ileum samples from healthy (n=10) and diseased (n=10) poultry farms in District Kasur, Pakistan. The in vitro probiotic potential of isolates was assessed through antibiotic resistance, acid and bile tolerance, auto and co aggregation, and antimicrobial activity against E. coli O78 and laboratory-isolated Avian Pathogenic E.coli (APEC). Strains NK1, NK2, and NK3, identified as Lacticaseibacillus casei, Lactoplantibacillus plantarum, and Lacticaseibacillus paracasei from healthy (23H, 72H) and diseased (21D) sources, respectively, have been registered in National Center of Biotechnology Information (NCBI) with accession numbers PP831161, PP991318, and PP989450. For the feeding trial, broiler chickens (N=90) were randomly split into six experimental groups (A-F) with three replicates (n=5/replicate). Except for the control group (A), all groups (B–F) were challenged with APEC (105 CFU/mL) on day 11. Group C was treated with commercial probiotic, while groups D–F were treated with Lactobacillus strains 23H, 72H, and 21D, respectively. Results showed that isolates from diseased birds were more acid-tolerant (8.7%) and bile salt-tolerant (40%), with no significant difference in antibiotic resistance (P > 0.05). Diseased isolates also demonstrated higher auto-aggregation (21.4%) and co-aggregation with E. coli O78 and APEC (11.2%). Five strains significantly reduced APEC CFU/mL and enhanced their growth. Group D-F effectively decreased APEC levels in vivo, with growth performance comparable (P < 0.05) to A and B groups and similar (P > 0.05) to the C group, suggesting that isolates from diseased birds could also be promising probiotic candidates despite their lower incidence rate compared to healthy isolates. Probiotic isolates from diseased broilers demonstrated comparable probiotic potential to those from healthy broilers, effectively reducing APEC levels and enhancing growth performance. 

Keywords


Abd El‐Hack ME, El‐Saadony MT, Shafi ME, Qattan SY, Batiha GE, Khafaga AF & Alagawany M. 2020. Probiotics in poultry feed: A comprehensive review. Journal of Animal Physiology and Animal Nutrition, 104(6): 1835-1850. DOI: 10.1111/jpn.13454
Ahirwar SS, Gupta MK, Gupta G & Singh V. 2017. Screening, isolation and identification of Lactobacillus species from dental caries of children. International Journal of Current Microbiology and Applied Sciences, 6(1): 497-503. DOI: 10.20546/ijcmas.2017.601.059
Anisimova E & Yarullina D. 2018. Characterization of erythromycin and tetracycline resistance in Lactobacillus fermentum strains. International Journal of Microbiology, 2018(1): 3912326. DOI: 10.1155/2018/3912326
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C & Castro J. 2024. Emerging approaches for mitigating biofilm-formation-associated infections in farm, wild, and companion animals. Pathogens, 13(4): 320. DOI: 10.3390/pathogens13040320
Arena MP, Capozzi V, Spano G & Fiocco D. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Applied Microbiology and Biotechnology, 101: 2641–2657. DOI: 10.1007/s00253-017-8182-z
Asghar S, Arif M, Nawaz M, Muhammad K, Ali MA, Ahmad MD & Nazir J. 2016. Selection, characterisation and evaluation of potential probiotic Lactobacillus spp. isolated from poultry droppings. Beneficial Microbes, 7(1): 35-44. DOI: 10.3920/BM2015.0020
Awad W, Ghareeb K & Böhm J. 2010. Effect of addition of a probiotic micro‐organism to broiler diet on intestinal mucosal architecture and electrophysiological parameters. Journal of Animal Physiology and Animal Nutrition, 94: 486–494. DOI: 10.1111/j.1439-0396.2009.00933.x
Baur AW. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45: 493-496. PMID: 5325707
Bergey DH. 1994. Bergey's manual of determinative bacteriology. 9th ed. Baltimore: Lippincott Williams and Wilkins.
Bhutada SA, Dahikar SB & Tambekar DH. 2011. Probiotic potential of commercially available probiotic preparations in prevention of enteric bacterial infections: an in vitro study. Growth, 9(2): 002.
Bustos AY, de Valdez GF, Fadda S & Taranto MP. 2018. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Research International, 112: 250–262. DOI: 10.1016/j.foodres.2018.06.035
Campana R, van Hemert S & Baffone W. 2017. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens, 9(1): 1-2. DOI 10.1186/s13099-017-0162-4
Chateau N, Deschamps AM & Sassi AH. 1994. Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Letters in Applied Microbiology, 19(1): 42-44. DOI: 10.1111/j.1472-765X.1994.tb00796.x
Claverys JP, Prudhomme M & Martin B. 2006. Induction of competence regulons as a general response to stress in gram-positive bacteria. Annual Review of Microbiology, 60: 451-475. DOI: 10.1146/annurev.micro.60.080805.142139
Collado MC, Meriluoto J & Salminen S. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226(5): 1065-1073. DOI: 10.1007/s00217-007-0632-x
Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C & Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences, 104(18): 7617-21. DOI: 10.1073/pnas.0700440104
Cox JM & Pavic A. 2010. Advances in enteropathogen control in poultry production. Journal of Applied Microbiology, 108(3): 745-755. DOI: 10.1111/j.1365-2672.2009.04456.x
Das S, Vishakha K, Banerjee S, Bera T, Mondal S & Ganguli A. 2022. A novel probiotic strain of Lactobacillus fermentum TIU19 isolated from Haria beer showing both in vitro antibacterial and antibiofilm properties upon two multi-resistant uropathogen strains. Current Research in Microbial Sciences, 3: 100150. DOI: 10.1016/j.crmicr.2022.100150
Dec M, Puchalski A, Urban-Chmiel R & Wernicki A. 2014. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics. Poultry Science, 93(10): 2464-2472. DOI: 10.3382/ps.2014-04025
Dobson A, Cotter PD, Ross RP & Hill C. 2012. Bacteriocin production: a probiotic trait? Applied and Environmental Microbiology, 78(1): 1–6. DOI: 10.1128/AEM.05576-11
Duarte-Mata DI & Salinas-Carmona MC. 2023. Antimicrobial peptides immune modulation role in intracellular bacterial infection. Frontiers in Immunology, 14: 1119574. DOI: 10.3389/fimmu.2023.1119574
Emami NK, Calik A, White MB, Kimminau EA & Dalloul RA. 2020. Effect of probiotics and multi-component feed additives on microbiota, gut barrier and immune responses in broiler chickens during subclinical necrotic enteritis. Frontiers in Veterinary Science, 7: 572142. DOI: DOI: 10.3389/fvets.2020.572142
European Food Safety Authority (EFSA). 2012. Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. EFSA Journal, 10(6): 2742. DOI: 10.2903/j.efsa.2012.2742.
Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TT & Sukumaran AT. 2020. Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler production and potential solutions. Microorganisms, 8(10): 1533. DOI: 10.3390/microorganisms8101533
Gaggia F, Mattarelli P & Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141: S15-S28. DOI: 10.1016/j.ijfoodmicro.2010.02.031
Gänzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2: 106–117. DOI: 10.1016/j.cofs.2015.03.001
Gilliland SE, Staley TE & Bush LJ. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. Journal of Dairy Science, 67(12): 3045-3051. DOI: 10.3168/jds.S0022-0302(84)81670-7
Gillor O, Etzion A & Riley MA. 2008. The dual role of bacteriocins as anti- and probiotics. Applied Microbiology and Biotechnology, 81: 591–606. DOI: 10.1007/s00253-008-1726-5
Gong J, Forster RJ, Yu H, Chambers JR, Wheatcroft R, Sabour PM &  Chen S. 2002. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiology Ecology, 41(3): 171-179. DOI: 10.1111/j.1574-6941.2002.tb00978.x
Gorreja F & Walker WA. 2022. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes, 14(1): 2149214. DOI: 10.1080/19490976.2022.2149214
Handley PS, Harty DW, Wyatt JE, Brown CR, Doran JP & Gibbs AC. 1987. A comparison of the adhesion, co-aggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. Journal of General Microbiology, 133(11): 3207-3217. DOI: 10.1099/00221287-133-11-3207
Horrocks NP, Matson KD & Tieleman BI. 2011. Pathogen pressure puts immune defense into perspective. Integrative and Comparative Biology. 51(4):563-576. DOI: 10.1093/icb/icr011
Hyronimus B, Le Marrec C, Sassi AH & Deschamps A. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbiology, 61(2-3): 193-197. DOI: 10.1016/S0168-1605(00)00366-4
Johnson TJ & Nolan LK. 2010. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiology and Molecular Biology Reviews, 74(3): 477-8. DOI: 10.1128/MMBR.00015-09
Kabir S. 2009. The role of probiotics in the poultry industry. International Journal of Molecular Sciences, 10: 3531–3546. DOI: 10.3390/ijms10083531
Kabir SM. 2010. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. International Journal of Environmental Research, 7(1): 89–114. DOI: 10.3390/ijerph7010089
Kakelar HM, Barzegari A, Hanifian S, Barar J & Omidi Y. 2019. Isolation and molecular identification of Lactobacillus with probiotic potential from abomasums driven rennet. Food Chemistry, 272: 709-714. DOI: 10.1016/j.foodchem.2018.08.081
Kamada N, Seo SU, Chen GY & Núñez G. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology, 13(5): 321-335. DOI: :10.1038/nri3430
Kassa G, Alemayehu D & Andualem B. 2024. Isolation, identification, and molecular characterization of probiotic bacteria from locally selected Ethiopian free range chickens gastrointestinal tract. Poultry Science, 103(2): 103311. DOI: 10.1016/j.psj.2023.103311
Khalid N, Bukhari SM, Ali W & Sheikh AA. 2023. Comparative study on the predominance of lactobacillus spp. and escherichia coli in healthy vs colibacillosis diseased broilers. Brazilian Journal of Poultry Science, 25: eRBCA-2022. DOI: 10.1590/1806-9061-2022-1758
Kim YB, Park J, Lee HG, Song JY, Kim DH, Ji W, Joo SS, Kim M, Jung JY, Kim M & Lee KW. 2024. Dietary probiotic Lacticaseibacillus paracasei NSMJ56 modulates gut immunity and microbiota in laying hens. Poultry Science, 103(4): 103505. DOI: 10.1016/j.psj.2024.103505
Kogut MH. 2013. The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry?. Journal of Applied Poultry Research, 22(3): 637-646. DOI: 10.3382/japr.2013-00741
Krumbeck JA, Maldonado-Gomez MX, Ramer-Tait AE & Hutkins RW. 2016. Prebiotics and synbiotics: dietary strategies for improving gut health. Current Opinion in Gastroenterology, 32(2): 110-119. DOI: 10.1097/MOG.0000000000000249
Lebeer S, Vanderleyden J & De Keersmaecker SC. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Reviews Microbiology, 8(3): 171–184. DOI: 10.1038/nrmicro2297
Liu W, Sun Z, Zhang J, Gao W, Wang W, Wu L, Sun T, Chen W, Liu X & Zhang H. 2009. Analysis of microbial composition in acid whey for dairy fan making in Yunnan by conventional method and 16S rRNA sequencing. Current Microbiology, 59(2): 199-205. DOI: 10.1007/s00284-009-9423-x
Ma T, Shen X, Shi X, Sakandar HA, Quan K, Li Y & Sun Z. 2023. Targeting gut microbiota and metabolism as the major probiotic mechanism-An evidence-based review. Trends in Food Science & Technology. 138:178-98. DOI: 10.1016/j.tifs.2023.06.013
Malfa P, Brambilla L, Giardina S, Masciarelli M, Squarzanti DF, Carlomagno F & Meloni M. 2023. Evaluation of antimicrobial, antiadhesive and co-aggregation activity of a multistrain probiotic composition against different urogenital pathogens. International Journal of Molecular Sciences, 24(2): 1323. DOI: 10.3390/ijms24021323
Mirsalami SM & Mirsalami M. 2024. Effects of duo-strain probiotics on growth, digestion, and gut health in broiler chickens. Veterinary and Animal Science, 24: 100343. DOI: 10.1016/j.vas.2024.100343
Mirza RA. 2020. Effect of dietary probiotic supplementation on performance, gut microflora, and hematology of local quails. Polytechnic Journal, 10(1): 93–97. DOI: 10.25156/ptj.v10n1y2020.pp93-97
Muhammad S, Iqra Y, Khan MI, Imran P, Khan MR, Asim S & Khan WA. 2014. Lactic acid bacteria in sourdough fermentation: a safe approach for food preservation. Pakistan Journal of Food Science, 24(4): 211–217. DOI: 10.5555/20153045166
Mwale M, Mupangwa J & Mapiye C. 2008. Growth performance of guinea fowl keets fed graded levels of baobab seed cake diets. International Journal of Poultry Science, 7: 429–432. DOI: 10.5555/20083286572
Nishiyama K, Nakazato A, Ueno S, Seto Y, Kakuda T, Takai S, Yamamoto Y & Mukai T. 2015. Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT 2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni. Molecular Microbiology, 98(4): 712–726. DOI: 10.1111/mmi.13153
Oakley BB, Morales CA, Line J, Berrang ME, Meinersmann RJ, Tillman GE & Seal BS. 2013. The poultry-associated microbiome: network analysis and farm-to-fork characterizations. PloS one, 8(2): e57190. DOI: :10.1371/journal.pone.0057190
Pickard JM, Zeng MY, Caruso R & Núñez G. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 279(1): 70-89. DOI: 10.1111/imr.12567
Ren D, Li C, Qin Y, Yin R, Du S, Ye F & Jin N. 2014. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe, 30: 1-10. DOI: 10.1016/j.anaerobe.2014.07.004
Reuben RC, Roy PC, Sarkar SL, Alam RU & Jahid IK. 2019. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiology, 19: 1-20. DOI: 10.1186/s12866-019-1626-0
Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, Daube G, Chemal M, Dousset X & Guyard-Nicodème M. 2017. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. International Journal of Food Microbiology, 247: 9–17. DOI: 10.1016/j.ijfoodmicro.2016.07.003
Segers ME & Lebeer S. 2014. Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microbial Cell Factories, 13(Suppl 1): S7. DOI: 10.1186/1475-2859-13-S1-S7
Servin AL. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, 28(4): 405-440. DOI: 10.1016/j.femsre.2004.01.003
Sharma C, Gulati S, Thakur N, Singh BP, Gupta S, Kaur S, Mishra SK, Puniya AK, Gill JP & Panwar H. 2017. Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1): 1-4. DOI: 10.1007/s13205-017-0682-0
Shimizu K. 2013. Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites, 4(1): 1-35. DOI: 10.3390/metabo4010001
Sun F, Chen J, Liu K, Tang M & Yang Y. 2022. The avian gut microbiota: Diversity, influencing factors, and future directions. Frontiers in Microbiology, 13: 934272. DOI: : 10.3389/fmicb.2022.934272
Tanaka H, Doesburg K, Iwasaki T & Mierau I. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. Journal of Dairy Science, 82(12): 2530–2535. DOI: 10.3168/jds.S0022-0302(99)75506-2
Thakur K, Tomar SK & De S. 2016. Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology, 9(4): 441-451. DOI: :10.1111/1751-7915.12335
Tian L, Zhong C, He Y, Lu Q, Wang Y, Zhao X, Wei H & Tao X. 2023. Preventive of Lacticaseibacillus casei WLCA02 against Salmonella Typhimurium infection via strengthening the intestinal barrier and activating the macrophages. Journal of Functional Foods, 104: 105507. DOI: 10.1016/j.jff.2023.105507
Vesković-Moračanin SM, Đukić DA & Memiši NR. 2014. Bacteriocins produced by lactic acid bacteria: a review. Acta Periodica Technologica, 45: 271–283. DOI: 10.2298/APT1445271V