Role of the Histaminergic System in the Inhibitory Effect of Melatonin on Broiler Chicken Feed Intake

Document Type : Original Paper

Authors

1 Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran

2 Department of Clinical Science, Faculty of Veterinary Medicine, Lorestan University, Khoramabad, Iran

3 Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran

Abstract

Prior investigations have postulated that melatonin, a prominent hormone produced by the pineal gland, can reduce animal food consumption. This study was designed to evaluate the involvement of central histamine H1 and H2 receptors in regulating melatonin-induced feeding behavior among broiler chickens. The research comprised three distinct experiments: In experiment 1, the four groups of chickens received intracerebroventricular (ICV) injections of the control solution, 2.5, 5, and 10 nmol of melatonin. In experiment 2, ICV administration of drugs in four groups of chickens was conducted as control solution, chlorpheniramine (histamine H1 receptor antagonist, 64 nmol), melatonin (10 nmol) and chlorpheniramine + melatonin. In experiment 3, birds received ICV injections with the same procedure as experiment 2, except they were injected with famotidine (histamine H2 receptor antagonist, 148 nmol), instead of chlorpheniramine. Cumulative feed intake measurements were obtained during the 3 h following the injections. The administration of melatonin (10 nmol) led to a notable reduction in feed intake (P < 0.05). Pre-injection of chlorpheniramine (64 nmol) mitigated the inhibitory impact of melatonin on feed intake (P < 0.05). In contrast, pre-injection of famotidine (148 nmol) failed to exert any significant influence on melatonin-induced feeding behavior. In conclusion, the findings suggest the presence of an interaction between melatonin and the central histaminergic system, mediated through H1 receptors, in the modulation of feed intake in broiler chickens.

Keywords


Apeldoorn EJ, Schrama JW, Mashaly MM & Parmentier HK. 1999. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens. Poultry Science, 78(2): 223-229. DOI: 10.1093/ps/78.2.223
Austin J & Marks D., 2008. Hormonal regulators of appetite. International Journal of Pediatric Endocrinology, 2009: 1-9. DOI: 10.1155/2009/141753
Bartness TJ & Wade GN. 1985. Body weight, food intake and energy regulation in exercising and melatonin-treated Siberian hamsters. Physiology & Behavior, 35(5): 805-808. DOI: 10.1016/0031-9384(85)90415-9
Bermudez FF, Forbes JM & Injidi MH. 1983. Involvement of melatonin and thyroid hormones in the control of sleep, food intake and energy metabolism in the domestic fowl. The Journal of Physiology, 337(1): 19-27. DOI: 10.1113/jphysiol.1983.sp014608
Bubenik GA & Pang SF. 1994. The role of serotonin and melatonin in gastrointestinal physiology: Ontogeny, regulation of food intake, and mutual serotonin‐melatonin feedback. Journal of Pineal Research, 16(2): 91-99. DOI: 10.1111/j.1600-079x.1994.tb00088.x
Bubenik GA, Pang SF, Hacker RR & Smith PS. 1996. Melatonin concentrations in serum and tissues of porcine gastrointestinal tract and their relationship to the intake and passage of food. Journal of Pineal Research, 21(4): 251-256. DOI: 10.1111/j.1600-079x.1996.tb00294.x
Cassone VM & Westneat DF. 2012. The bird of time: cognition and the avian biological clock. Frontiers in Molecular Neuroscience, 5: 32. DOI: 10.3389/fnmol.2012.00032
Cheng L, Liu J & Chen Z. 2021. The histaminergic system in neuropsychiatric disorders. Biomolecules, 11(9): 1345. DOI: 10.3390/biom11091345
Conde-Sieira M, Librán-Pérez M, Patiño MAL, Soengas JL & Míguez JM. 2012. Melatonin treatment alters glucosensing capacity and mRNA expression levels of peptides related to food intake control in rainbow trout hypothalamus. General and Comparative Endocrinology, 178(1): 131-138. DOI: 10.1016/j.ygcen.2012.04.011
Cote NK & Harrington ME. 1993. Histamine phase shifts the circadian clock in a manner similar to light. Brain Research, 613(1): 149-151. DOI: 10.1016/0006-8993(93)90465-y
Davis JL, Masuoka DT, Gerbrandt LK & Cherkin A. 1979. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiology & Behavior, 22(4): 693-695. DOI: 10.1016/0031-9384(79)90233-6
De Pedro N, Martínez‐Álvarez RM & Delgado MJ. 2008. Melatonin reduces body weight in goldfish (Carassius auratus): effects on metabolic resources and some feeding regulators. Journal of Pineal Research, 45(1): 32-39. DOI: 10.1111/j.1600-079X.2007.00553.x
Ekmekcioglu C. 2014. Expression and putative functions of melatonin receptors in malignant cells and tissues. Wiener Medizinische Wochenschrift, 164(21-22): 472-478. DOI: 10.1007/s10354-014-0289-6
Furuse M, Ando R, Bungo T, Shimojo M & Masuda Y. 1999. Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. British Poultry Science, 40(5): 698-700. DOI:10.1080/00071669987115
Guan Q, Wang Z, Cao J, Dong Y & Chen Y. 2021. Mechanisms of melatonin in obesity: a review. International Journal of Molecular Sciences, 23(1): 218. DOI: 10.3390/ijms23010218
Hardeland R, Madrid JA, Tan DX & Reiter RJ. 2012. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. Journal of Pineal Research, 52(2): 139-166. DOI: 10.1111/j.1600-079X.2011.00934.x
Huether G. 1994. Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Annals of the New York Academy of Sciences, 719(1): 146-158. DOI: 10.1111/j.1749-6632.1994.tb56826.x
Injidi MH & Forbes JM. 1983. Growth and food intake of intact and pinealectomised chickens treated with melatonin and triiodothyronine. British Poultry Science, 24(4): 463-469. DOI: 10.1080/00071668308416762
Jaefari-Anari M, Zendehdel M, Gilanpour H, Asghari A & Babapour V. 2018. Central opioidergic system interplay with histamine on food intake in neonatal chicks: role of µ-opioid and H1/H3 receptors. Brazilian Journal of Poultry Science, 20: 595-604. DOI: 10.1590/1806-9061-2018-0785
Meade S & Denbow DM. 2001. Feeding, drinking, and temperature responses of chickens to intracerebroventricular histamine. Physiology & Behavior, 73(1-2): 65-73. DOI: 10.1016/s0031-9384(01)00438-3
Mikkelsen JD, Panula P & Møller M. 1992. Histamine-immunoreactive nerve fibers in the rat pineal gland: evidence for a histaminergic central innervation. Brain Research, 597(2): 200-208. DOI: 10.1016/0006-8993(92)91475-t
Miller GD. 2019. Appetite regulation: hormones, peptides, and neurotransmitters and their role in obesity. American Journal of Lifestyle Medicine, 13(6): 586-601. DOI: 10.1177/1559827617716376
Nowak J. 1994. Histamine in the central nervous system: its role in circadian rhythmicity. Acta Neurobiologiae Experimentalis, 54(Suppl): 65-82.
Nowak JZ & Sek B. 1994. Stimulatory effect of histamine on cyclic AMP formation in chick pineal gland. Journal of Neurochemistry, 63(4): 1338-1345. DOI: 10.1046/j.1471-4159.1994.63041338.x
Olanrewaju HA, Thaxton JP, Dozier WA, Purswell J, Roush WB & Branton SL. 2006. A review of lighting programs for broiler production. International Journal of Poultry Science, 5(4): 301-308. DOI: 10.3923/ijps.2006.301.308
Piccinetti CC, Migliarini B, Olivotto I, Coletti G, Amici A & Carnevali O. 2010. Appetite regulation: the central role of melatonin in Danio rerio. Hormones and Behavior, 58(5): 780-785. DOI: 10.1016/j.yhbeh.2010.07.013. DOI: 10.1089/zeb.2012.0844
Piccinetti CC, Migliarini B, Olivotto I, Simoniello MP, Giorgini E & Carnevali O. 2013. Melatonin and peripheral circuitries: insights on appetite and metabolism in Danio rerio. Zebrafish, 10(3): .275-282. DOI: 10.1089/zeb.2012.0844
Pietras M. 1996. The effect of pinealectomy on oxygen consumption and rectal temperature of adult hens. Journal of Animal and Feed Sciences, 5(3): 289-295. DOI:10.22358/jafs/69608/1996
Ríos-Lugo MJ, Jiménez-Ortega V, Cano-Barquilla P, Mateos PF, Spinedi EJ, Cardinali DP & Esquifino AI. 2015. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats. Hormone Molecular Biology and Clinical Investigation, 21(3): 175-183. DOI: 10.1515/hmbci-2014-0041
Saito S, Tachibana T, Choi YH, Denbow DM & Furuse M. 2005. ICV melatonin reduces acute stress responses in neonatal chicks. Behavioural Brain Research, 165(2): 197-203. DOI: 10.1016/j.bbr.2005.06.045
Schneider EH, Neumann D & Seifert R. 2014. Modulation of behavior by the histaminergic system: lessons from HDC-, H3R-and H4R-deficient mice. Neuroscience & Biobehavioral Reviews, 47: 101-121. DOI: 10.1016/j.neubiorev.2014.07.020
Shalikar M, Zendehdel M, Vazir B & Asghari A. 2021. Impact of the Central Histaminergic and Melanocortin Systems on Leptin-Induced Hypophagia in Neonatal Layer Chicken. Archives of Razi Institute, 76(6): 1735. DOI: 10.22092/ari.2021.354188.1626
Sun YY, Li YL, Li DL, Chen C, Bai H, Xue FG & Chen JL. 2017. Responses of broilers to the near-continuous lighting, constant 16-h lighting, and constant 16-h lighting with a 2-h night interruption. Livestock Science, 206: 135-140. DOI: 10.1016/j.livsci.2017.10.019
Suriagandhi V & Nachiappan V. 2022. Therapeutic target analysis and molecular mechanism of melatonin-treated leptin resistance induced obesity: A Systematic Study of Network Pharmacology. Frontiers in Endocrinology, 13: 927576. DOI: 10.3389/fendo.2022.927576
Taati M, Babapour V, Kheradmand A & TARAHI M. 2009. The role of central endogenous histamine and H1, H2 and H3 receptors on food intake in broiler chickens. Iranian Journal of Veterinary Research. 10(1): 54-60. DOI:10.22099/ijvr.2009.1090
Taati M, Nayebzadeh H, Khosravinia H & Cheraghi J. 2010. The role of the histaminergic system on the inhibitory effect of ghrelin on feed intake in broiler chickens.  Iranian Journal of Veterinary Research, 11(1): 38-45. DOI: 10.22099/ijvr.2010.173
Tabarean IV. 2016. Histamine receptor signaling in energy homeostasis. Neuropharmacology, 106: 13-19. DOI: 10.1016/j.neuropharm.2015.04.011
Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N & Fougerou C. 2017. Melatonin: pharmacology, functions and therapeutic benefits. Current Neuropharmacology, 15(3): 434-443. DOI: 10.2174/1570159X14666161228122115
Tuomisto L. 1991. Involvement of histamine in circadian and other rhythms. In: Histaminergic neurons: morphology and function (Eds T Watanabe and H Wada). CRC Press, Boca Raton, 283-295.
Van Drunen R & Eckel-Mahan K. 2021. Circadian rhythms of the hypothalamus: from function to physiology. Clocks & sleep, 3(1): 189-226. DOI: 10.3390/clockssleep3010012
von Gall C. 2022. The effects of light and the circadian system on rhythmic brain function. International Journal of Molecular Sciences, 23(5): 2778. DOI: 10.3390/ijms23052778
Yoshimatsu H, Chiba S, Tajima D, Akehi Y & Sakata T. 2002. Histidine suppresses food intake through its conversion into neuronal histamine. Experimental Biology and Medicine, 227(1): 63-68. DOI:
10.1177/153537020222700111
Zawilska J, Sęk A, Orszulak-Michalak D, Mackova M & Nowak J. 1996. The presence of histamine and tele-methylhistamine in the pineal gland of chick. Acta Neurobiologiae Experimentalis, 56(3): 691-695. DOI:  10.55782/ane-1996-1173
Zendehdel M & Hassanpour S. 2014. Central regulation of food intake in mammals and birds: a review. Neurotransmitter, 1: 1-7. DOI: 10.14800/nt.251
Zheng L, Ma YE, Gu LY, Yuan D, Shi ML, Guo XY & Zhan XA. 2013. Growth performance, antioxidant status, and nonspecific immunity in broilers under different lighting regimens. Journal of Applied Poultry Research, 22(4): 798-807. DOI: 10.3382/japr.2012-00713