Long-Term Egg Production Curve Fitting Using Nonlinear Models For Superior Local Chicken of Indonesia

Document Type : Original Paper

Authors

1 Agriculture Instrument Standardization Agency, Ministry of Agriculture, Republic of Indonesia

2 Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, 46115, IndonesiaWest Java, 46115, Indonesia

3 Department of Animal Science, Faculty of Animal and Agricultural Sciences Universitas Diponegoro, Semarang 50275, Central Java, IndonesiaUniversitas Diponegoro, Semarang 50275, Central Java, Indonesia

Abstract

The objective of this study was to analyze the unique tendencies reported along the egg-production curve for the Kampung Unggul Badan Litbang Pertanian (KUB) chicken. This research was superior to others due to its comprehensive analysis of multiple nonlinear models specifically tailored to the unique egg production patterns of the indigenous KUB chicken, providing highly accurate and practical predictive capabilities for local poultry farming. Egg production was monitored in 797 KUB chickens from 17 breeding flocks. The study evaluated Logistic, Compartmental, Gamma, and Yang to represent the egg production curve. The Yang function, which is suggested as the best-fitting model, accurately reflected the characteristics of the observed data on egg production for KUB chickens. The Yang function had the highest correlation coefficient, medium pseudo R2, lowest MSE, AIC, and BIC. The rankings for the Logistic, Compartmental, and Gamma functions were second, third, and fourth, in that order. In order to predict future results in the weekly egg production of KUB chickens, it is advised that the Yang be used to monitor the beginning rate of production to peak, the peak time of production, and the gradual fall after the peak using prior experiences.

Keywords


Ahmad, HA. 2011. Egg production forecasting: Determining efficient modeling approaches. Journal of Applied Poultry Research, 20:463–473. DOI: 10.3382/japr.2010-00266
Ariza AG, Arbulu AA, Jurado JML, González FJN, Baena SN & Vallejo M EC. 2022. Mathematical modeling of egg production curve in a multivariety endangered hen breed. Research in Veterinary Science, 144:196-203. DOI: 10.1016/j.rvsc.2021.11.001
Bakrie B, Rohaeni ES, Yusriani Y & Tirajoh S. 2021. The development of a newly formed superior local chicken in Indonesia–A review. Journal of Hunan Univiversity Natural Science, 48(9): 25-34.
Domínguez-Viveros J, Rodríguez-Almeida FA, Aguilar-Palma GN, Castillo-Rangel F, Saiz-Pineda JF & Villegas-Gutiérrez C. 2020. Fitting of nonlinear models to characterize the growth of five zebu cattle breeds. Livestock Science, 242:104303. DOI: 10.1016/j.livsci.2020.104303
Dziak JJ, Coffman DL, Lanza ST, Li R & Jermiin LS. 2020. Sensitivity and specificity of information criteria. Briefing in Bioinformatic, 21(2):553-565. DOI: 10.1093/bib/bbz016
Emamgholi Begli H, Schaeffer LR, Abdalla E, Lozada-Soto EA, Harlander-Matauschek A, Wood BJ & Baes CF. 2021. Genetic analysis of egg production traits in turkeys (Meleagris gallopavo) using a single-step genomic random regression model. Genetic Selection Evolution, 53(1):53-61. DOI: 10.1186/s12711-021-00655-w
Faraji-Arough H, Ghazaghi M & Rokouei M. 2023. Mathematical modeling of egg production curve in Khazak indigenous hens. Poultry Science Journal, 11(1): 73-81. DOI: 10.22069/psj. 2022.20251.1820
Felipe VP, Silva MA, Valente BD & Rosa GJ. 2015. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes. Poultry Science, 94(4):772-780. DOI: 10.3382/ps/pev031
Gavora JS, Parker RJ & McMillan I. 1971. Mathematicalmodel of egg production. Poultry Science, 50: 1306-1315.
Iskandar S & Sartika T. 2014. KUB chicken: “The first Indonesian kampung chicken selected for egg production”. In Proceedings of the 16th AAAP Animal Science Congress 2:157-160.
Khabiri A, Toroghi R, Mohammadabadi M & Tabatabaeizadeh S. 2022. Cloning and nucleotide sequencing of the complete matrix protein of Newcastle disease virus subgenotype VII. 1.1 prevalence in broiler flocks of northeastern Iran. Modern Genetic Journal 17 (2): 113-125.
Khabiri A, Toroghi R, Mohammadabadi M &Tabatabaeizadeh SE. 2023. Introduction of a Newcastle disease virus challenge strain (sub-genotype VII. 1.1) isolated in Iran. Veterinary Research Forum 14 (4): 221.
Kuha J. 2004. AIC and BIC: comparisons of assumptions and performance. Sociological Methods and Research, 33: 188–229. DOI: 10.1177/0049124103262065
Kuhi H & France J. 2019. Modelling cumulative egg production in laying hens and parent stocks of broiler chickens using classical growth functions. British Poultry Science, 60(5):564-569. DOI: 10.1080/00071668.2019.1622080
Lewis F, Butler A & Gilbert L. 2010. A unified approach to model selection using the likelihood ratio test. Methods in Ecology and Evolution, 2: 155-162. DOI: 10.1111/j.2041-210X. 2010.00063.x.
Liu Z, Yang N, Yan Y, Li G, Liu A, Wu G & Sun C. 2019. Genome-wide association analysis of egg production performance in chickens across the whole laying period. BMC Genetics, 20:67. DOI: 10.1186/s12863-019-0771-7
McMillan I, Fitz-Earle M, Butler L & Robson DS. 1970. Quantitative genetics of fertility I. Lifetime egg production of Drosophila melanogaster-Theorotical. Genetics, 65:349-353. DOI: 10.1093 /genetics/65.2.349
McNally DH. 1971. Mathematical model for poultry egg production. Biometrics, 27: 735-738. DOI: 10.2307/2528612
Mahmoud BYF, Emam AM & El-Fulll EA. 2021. Evaluation of four nonlinear models describing egg production curve of Fayoumi layers. Egypt Poultry Science Journal, 14:147-159. DOI: 10.21608/EPSJ.2021.160062
Moazeni SM, Mohammadabadi M, Sadeghi M, Shahrbabak HM, Koshkoieh AE & Bordbar F. 2016a. Association between UCP gene polymorphisms and growth, brreeding value of growth and reproductive traits in Mazandaran indigenous chicken. Open Journal of Animal Science 6: 1-8.
Moazeni SM, Mohammadabadi MR, Sadeghi M, Moradi Shahrbabak H & Esmailizadeh AK. 2016b. Association of the melanocortin-3(MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. Journal of Livestock Science and Technology 4, 51-56.
Mohammadabadi MR, Nikbakhti M, Mirzaee HR, Shandi A, Saghi DA, Romanov MN, Moiseyeva IG 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian Journal of Genetics, 46 (4): 505-509
Mohammadifar A, Faghih Imani SA, Mohammadabadi MR & Soflaei M. 2014. The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Journal of Agriculture and Biotechnology 5:125-136 (In Persian).
Mohammadifar A & Mohammadabadi MR. 2017. The Effect of Uncoupling Protein Polymorphisms on Growth, Breeding Value of Growth and Reproductive Traits in the Fars Indigenous Chicken. Iranian Journal of Applied Animal Science 7: 679-685.
Mohammadifar A & Mohammadabadi MR. 2018. Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malaysian Applied Biology, 47: 85–90.
Narinc D, Karaman E, Aksoy T & Firat MZ. 2013. Investigation of nonlinear models to describe long-term egg production in Japanese quail. Poultry Science, 92(6):1676-1682. DOI: 10.3382/ps.2012-02511
Narinc D, Uckardes F & Aslan E. 2014. Egg production curve analyses in poultry science. World's Poultry Science. Journal, 70(4):817-828. DOI: 10.1017/S0043933914000877
Nelder JA. 1961. The fitting of a generalization of the logistic curve. Biometrics, 17:89-110. DOI: 10.2307/2527498.
Oni OO, Abubakar BY, Dim NI, Asiribo OE & Adeyinka IA. 2007. Genetic and phenotypic relationships between McNally model parameters and egg production traits. International Journal of Poultry Science, 6:8-12.
Otwinowska-Mindur A, Gumulka M & Kania-Gierdziewicz J. 2016. Mathematical models for egg production in broiler breeder hens. Annals of Animal Science, 16(4):1185.
Safari-Aliqiarloo A, Zare M, Faghih-Mohammadi F, Seidavi A, Laudadio V, Selvaggi M & Tufarelli V. 2018. Phenotypic study of egg production curve in commercial broiler breeders using Compartmental function. Revista Brasileira de Zootecnia, 47:e20170225. DOI: 10.1590/rbz4720170225
SAS (Statistical Analysis System). 2021. SAS/STAT® 9.4. User's Guide. SAS Institute Inc. Cary, North Carolina.
Savegnago RP, Nunes BN, Caetano SL, Ferraudo AS, Schmidt GS, Ledur MC & Munari DP. 2011. Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poultry Science, 90(3): 705-711. DOI: 10.3382/ps.2010-00723
Savegnago RP, Cruz VAR, Ramos SB, Caetano SL, Schmidt GS, Ledur MC, El Faro L & Munari DP. 2012. Egg production curve fitting using nonlinear models for selected and non-selected lines of White Leghorn hens. Poultry Science, 91(11): 2977-2987. DOI: 10.3382/ps.2012-02277
Sartika T & Iskandar S. 2019. The productivity of 4th generation KUB-2 chicken. Jurnal Ilmu Ternak dan Veteriner, 24(4): 151-157. DOI: 10.14334/jitv.v24i4.2033
Shahdadnejad N, Mohammadabadi MR, Shamsadini M. 2016. Typing of Clostridium Perfringens Isolated from Broiler Chickens Using Multiplex PCR. Genetics in the third millennium, 14 (4): 4368-4374.
Shibak A, Maghsoudi A, Rokouei M, Farhangfar H & Faraji-Arough H. 2023. Investigation of egg production curve in ostrich using nonlinear functions. Poultry Science, 102(2): 102333. DOI: 10.1016/j.psj.2022.102333
Wit E, Heuvel EVD & Romeijn JW. 2012. ‘All models are wrong...’: an introduction to model uncertainty. Statistica Neerlandica, 66:217-236. DOI: 10.1111/j.14679574.2012.00530.x
Yang, N, Wu C & McMillan I. 1989. New mathematical model of poultry egg production. Poultry Science, 68:476-481. DOI: 10.3382/ps.0680476.