Impact of Enzyme-Supplemented Diets with Varying Metabolizable Energy Levels on Growth Performance, Egg Quality, and Blood Parameters in Laying Hens

Document Type : Original Paper

Authors

Animal Science Department, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran

Abstract

This study examined the impact of reducing dietary metabolizable energy (ME) and supplementing with exogenous enzymes on performance, egg quality, and blood parameters of laying hens from 42 to 56 weeks of age. Four hundred and thirty-two laying hens were divided into twelve groups with six replicates (6 birds/replicate) and fed diets with varying levels of ME (control, 2.5% lower, or 5% lower) with or without a combination of two types of enzymes (Avizyme (1502) and Phyzyme (XP)). Hens fed diets with 2.5% lower ME exhibited reduced feed intake (FI), egg mass (EM), and a poorer feed conversion ratio (FCR) compared to the control group (P < 0.05). Reducing dietary ME by 5% did not significantly affect FI, egg production (EP), FCR and EM (P > 0.05). Enzyme supplementation generally improved FI and FCR at some points, but separate addition showed a greater benefit compared to combining them (P < 0.05). The use of enzymes resulted in a decrease in the Haugh unit compared to the control diet (P < 0.05). Additionally, the decrease in the energy content of the diet reduced the egg shape index (P < 0.05). Furthermore, the simultaneous addition of enzymes and decrease in energy increased the blood uric acid levels (P < 0.05). This study demonstrates that reducing metabolizable energy in corn-soybean meal diets for laying hens negatively impacts performance, with enzyme supplementation failing to fully compensate for these detrimental effects.

Keywords


Alkan S & Türker İ. 2021. Effects of Egg Shape Index on Egg Quality in Partridges. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 11(2): 140-151. DOI: 10.54370/ordubtd.996530
Buchanan NP, Kimbler LB, Parsons AS, Seidel GE, Bryan WB, Felton EE & Moritz JS. 2007. The effects of non-starch polysaccharide enzyme addition and dietary energy restriction on performance and carcass quality of organic broiler chickens. Journal of Applied Poultry Research, 16(1):1-2. DOI: 10.1093/japr/16.1.1
Bedford MA & Schulze H. 1998. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews, 11(1): 91-114. DOI: 10.1079 /NNR19980007
Bhanja SK, Reddy VR, Panda A K, Rao SV & Sharma RP. 2005. Effect of supplementing microbial phytase on performance of broiler breeders fed low non-phytate phosphorus diet. Asian-Australasian Journal of Animal Sciences, 18(9): 1299-1304. DOI:10.5713/ajas.2005.1299
Cook ME, Drake B & Pierson EEM. 2000. A blend of xylanase, amylase and protease (Avizyme 1500) improves laying hen egg production, feed efficiency, and livability when supplemented in corn-soy based diets. Poultry Science, 79(1).
Costa FGP, Goulart CC, Figueiredo DF, Oliveira CFS & Silva JHV. 2008. Economic and environmental impact of using exogenous enzymes on poultry feeding. International Journal of Poultry Science, 7(4): 311-314. DOI: 10.5555/ 20083286552
Cowan WD. 1993. Understanding the manufacturing, distribution, application, and overall quality of enzymes in poultry feeds. Journal of Applied Poultry Research, 2(1): 93-99. DOI: 10.1093/j apr/2.1.93
Cowieson AJ & Adeola O. 2005. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poultry Science, 84(12): 1860-1867. DOI: 10.1093/ps/84.12.1860
Cowieson AJ & Ravindran V. 2008. Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: growth performance and digestibility of energy, minerals and amino acids. British Poultry Science, 49(1): 37-44. DOI: 10.1080/00071660701812989
Douglas MW, Parsons CM & Bedford MR. 2000. Effect of various soybean meal sources and Avizyme on chick growth performance and ileal digestible energy. Journal of Applied Poultry Research, 9(1): 74-80. DOI: 10.1093/japr/9.1.74
Duncan DB. 1955. Multiple range and multiple F tests. Biometrics, 11(1): 1-42. DOI: 10.2307 /3001478
Eisen EJ, Bohren BB & McKean HE. 1962. The Haugh unit as a measure of egg albumen quality. Poultry Science, 41(5): 1461-1468. DOI: 10.3382/ps.0411461
Enenebeaku CK, Enenebeaku UE & Ezejiofor TIN. 2018. Evaluation of selected agricultural wastes as viable sources of vitamin supplements in poultry feeds. World News of Natural Sciences, (20): 103-120.
Hahn-Didde D & Purdum SE. 2014. The effects of an enzyme complex in moderate and low nutrient-dense diets with dried distillers grains with solubles in laying hens. Journal of Applied Poultry Research, 23(1): 23-33. DOI: 10.3382/japr.2013-00764
Harms RH, Russell GB & Sloan DR. 2000. Performance of four strains of commercial layers with major changes in dietary energy. Journal of Applied Poultry Research, 9(4): 535-541. DOI: 10.1093/japr/9.4.535
Jalal MA, Scheideler SE & Marx D. 2006. Effect of bird cage space and dietary metabolizable energy level on production parameters in laying hens. Poultry Science, 85(2): 306-311. DOI: 10.1093/ps/85.2.306
Juanpere J, Perez-Vendrell AM, Angulo E & Brufau J. 2005. Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poultry Science, 84(4): 571-580. DOI: 10.1093/ps/84.4.571
Khondowe P, Mutayoba B, Muhairwa A & Phiri E. 2021. Effects of heat stress and a low energy diet on blood parameters and liver hsp70 and iNOS gene expressions in local chickens. Veterinary and Animal Science, 14: 100221. DOI: 10.1016/j.vas.2021.100221
Latshaw JD, Havenstein GB & Toelle VD. 1990. Energy level in the laying diet and its effects on the performance of three commercial Leghorn strains. Poultry Science, 69(11): 1998-2007. DOI: 10.3382/ps.0691998
Li F, Zhang LM, Wu XH, Li CY, Yang XJ, Dong Y, Lemme A, Han JC & Yao JH. 2013. Effects of metabolizable energy and balanced protein on egg production, quality, and components of Lohmann Brown laying hens. Journal of Applied Poultry Research, 22(1): 36-46. DOI: 10.3382/japr.2012-00568
Lin H, Du R, Gu XH, Li FC & Zhang ZY. 2000. A study on the plasma biochemical indices of heat-stressed broilers. Asian-Australasian Journal of Animal Sciences, 13(9): 1210-1218. DOI: 10.5713/ajas.2000.1210
Lotfi E, Karimi N, Parizadian Kavan B & Sharifi MR. 2018. Influence of different dietary levels of energy and protein on reproductive and post hatch growth performance in Japanese quails. Iranian Journal of Applied Animal Science, 8(1): 137-145
McCleary BV. 2001. Analysis of feed enzymes. Enzymes in Farm Animal Nutrition, 85-107. DOI: 10.1079/9780851993935.0085
Novak CL, Yakout HM & Remus J. 2007. Response to varying dietary energy and protein with or without enzyme supplementation on growth and performance of leghorns: growing period. Journal of Applied Poultry Research, 16(4): 481-493. DOI: 10.3382/japr.2006-00082
Persia ME, Dehority BA & Lilburn MS. 2002. The effects of enzyme supplementation of corn-and wheat-based diets on nutrient digestion and cecal microbial populations in turkeys. Journal of Applied Poultry Research, 11(2): 134-145. DOI: 10.1093/japr/11.2.134
SAS (Statistical Analysis System). 2015. SAS/stat users guide, version 9.4. SAS Institute Inc.
Scheideler SE, Beck MM, Abudabos A & Wyatt CL. 2005. Multiple-enzyme (Avizyme) supplementation of corn-soy-based layer diets. Journal of Applied Poultry Research, 14(1): 77-86. DOI: 10.1093/japr/14.1.77
Selle PH & Ravindran V. 2007. Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135(1-2): 1-41. DOI: 10.1016/j.anifeedsci.2006.06.010
Slominski BA, Meng X, Campbell LD, Guenter W & Jones O. 2006. The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: Flaxseed. Poultry Science, 85(6): 1031-1037. DOI: 10.1093/ps/85.6.1031
Sohail SS, Bryant MM, Roland Sr DA, Apajalahti JHA & Pierson EEM. 2003. Influence of Avizyme 1500 on performance of commercial leghorns. Journal of Applied Poultry Research, 12(3): 284-290. DOI: 10.1093 /japr/12.3.284
Suharsono H, Putra IBPS, Ardana IBK, Fajar IWN, Gunawan PHS & Agustina KK. 2019. Increasing eggs protein level and eggshell integrality performed by addition of xylanase, amylase, protease (avizyme® 1502) in layers feed. Journal of the Advances in Agriculture, 10: 1623-1628. DOI: 10.24297/jaa.v10i0.8061
Tiwari SP, Gendley MK, Pathak AK & Gupta R. 2010. Influence of an enzyme cocktail and phytase individually or in combination in Ven Cobb broiler chickens. British Poultry Science, 51(1): 92-100. DOI: 10.1080 /00071660903457187
Ulo YB. 2022. Fundamental role of supplanting enzymes in poultry diet. World Scientific News, 166: 100-115.
Um JS, Paik IK, Chang MB & Lee BH. 1999. Effects of microbial phytase supplementation to diets with low non-phytate phosphorus levels on the performance and bioavailability of nutrients in laying hens. Asian-Australasian Journal of Animal Sciences, 12(2): 203-208. DOI: 10.5713/ajas.1999.203
Valkonen E, Venäläinen E, Rossow L & Valaja J. 2008. Effects of dietary energy content on the performance of laying hens in furnished and conventional cages. Poultry Science, 87(5): 844-852. DOI: 10.3382/ps.2007-00237
Virden WS, Lilburn MS, Thaxton JP, Corzo A, Hoehler D & Kidd MT. 2007. The effect of corticosterone-induced stress on amino acid digestibility in Ross broilers. Poultry Science, 86(2): 338-342. DOI: 10.1093/ ps/86. 2.338
Zanella I, Sakomura NK, Silversides FG, Fiqueirdo A & Pack M. 1999. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poultry Science, 78(4): 561-568. DOI: 10.1093/ps/78.4.561