Apajalahti J, Kettunen A & Graham H. 2004 Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Science, 60: 223–232. DOI: 10.1079/WPS200415
Bao H, She R, Liu T, Zhang Y, Peng KS, Luo D, Yue Z, Ding Y, Hu Y, Liu W& Zhai L. 2009. Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poultry Science, 88: 291–297. DOI:10.3382/ps.2008-00330
Caly DL, D'Inca Romain, Auclair E & Drider D. 2015. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist’s perspective. Frontiers in Microbiology, 6: 1-12. DOI: 10.3389/fmicb.2015.01336
Castanys-Muñoz E, Martin MJ & Vazquez E. 2016. Building a beneficial microbiome from birth. Advances in Nutrition, 7: 323–30. DOI:10.3945/an.115.010694
Caspary WF. 1992. Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 55: 299–308. DOI:10.1093/ajcn/55.1.299s
Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK & Chae BJ. 2013. Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Animal Feed Science and Technology, 185(1-2): 78–84. DOI: 10.1016/j.anifeedsci.2013.07.005
Daneshmand A, Kermanshahi H, Sekhavati MH, Javadmanesh A & Ahmadian M. 2019. Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Scientific Reports, 9 (1) DOI: 10.1038/s41598-019-50511-7
Daneshmand A, Kermanshahi H, Sekhavati MH, Javadmanesh A, Ahmadian M, Alizadeh M & Aldavoodi A. 2020. Effects of cLFchimera, a recombinant antimicrobial peptide, on intestinal morphology, microbiota, and gene expression of immune cells and tight junctions in broiler chickens challenged with C. perfringens. Scientific Reports, 10: 17704. DOI: 10.1038/s41598-020-74754-x
Hu F, Gao X, She R, Chen J, Mao J, Xiao P & Shi R. 2017. Effects of antimicrobial peptides on growth performance and small intestinal function in broilers under chronic heat stress. Poultry Science, 96: 798–806. DOI: 10.3382/ps/pew379
Javadmanesh A, Mohammadi E, Mousavi Z, Azghandi M & Tanhaeian A .2021. Antibacterial effects assessment on some livestock pathogens, thermal stability and proposing a probable reason for different levels of activity of thanatin. Scientific Reports, 11(1): 10890. DOI: 10.1038/s41598-021-90313-4.
Kermanshahi H, Heravi RM, Attar A, Abbasi Pour AR, Bayat E, Hossein Zadeh M, Daneshmand A & Ibrahim SA. 2017. Effects of acidified yeast and whey powder on performance, organ weights, intestinal microflora, and gut morphology of male broilers. Brazilian Journal of Poultry Science, 19: 309 –316. DOI: 10.1590/1806-9061-2016-0351
Khodambashi Emami N, Daneshmand A, Naeini SZ, Graystone EN & Broom LJ. 2017. Effects of commercial organic acid blends on male broilers challenged with E. coli K88: performance, microbiology, intestinal morphology, and immune response. Poultry Science, 96, 3254–3263. DOI: 10.3382/ps/pex106
Kiela. Powel R and Ghishan. Fayez K.2016. Physiology of intestinal absorption and secretion. Best practice & research Clinical gastroenterology, 30(2): 145–159. DOI:10.1016/j.bpg.2016.02.007
Lai Y & Gallo LR. 2009. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends in Immunology, 30(3): 131–141. DOI:10.1016/j.it.2008.12.003
Liu T, She R, Wang K, Bao H, Zhang Y, Luo D, Hu Y, Ding Y, Wang D & Peng K. 2008. Effects of rabbit Sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poultry Science, 87: 250–254. DOI: 10.3382/ps.2007-00353
Matsuda K, Chaudhari A & Lee HJ. 2010. Avian colibacillosis caused by an intestinal pathogenic Escherichia coli isolate from calf diarrhea. Research in Veterinary Science, 89: 150–152. DOI: 10.1016/j.rvsc.2010.02.008
Ocana VS, De Ruiz Holgado AAP & Nader-Macias ME. 1999. Growth inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus paracasei subsp. paracasei isolated from the human vagina. FEMS Immunology and Medical Microbiology, 23: 87–92. DOI: 10.1007/pl00006802
Ohh SH, Shinde PL, Choi JY, Jin Z , Hahn TW , Lim HT , Kim GY, Park YK , Hahm KS & Chae BJ. 2010. Effects of potato (Solanum tuberosum L. cv. golden valley) protein on performance, nutrient metabolizability, and cecal microflora in broilers. European Poultry Science (EPS), 74: 30–35. DOI:10.3382/ps.2008-00491
Olkowski AA, Wojnarowicz C, Chirino-Trejo M & Drew MD. 2005. Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis. Research in Veterinary Science, 81: 99–108. DOI: 10.1016/j.rvsc.2005.10.006
Popoff MR. 2013. Clostridium, in Sécurité Sanitaire des Aliments: Epidémiologie et lutte Contre les Contaminants Zoonotiques, eds D. Drider and G. Salvat (Paris: Economica), 165–189.
Proctor A & Phillips GJ. 2019. Differential effects of bacitracin methylene disalicylate (BMD) on the distal colon and cecal microbiota of young broiler chickens. Frontiers in Veterinary Science, 6: 114. DOI: 10.3389/fvets.2019.00114.
Reicher N, Melkman-Zehavi T, Dayan JA. Wong E & Uni Z. 2022. Nutritional Stimulation by In-ovo Feeding Modulates Cellular Proliferation and Differentiation in the Small Intestinal Epithelium of Chicks. Animal Nutrition, 8: 91-101. DOI: 10.1016/j.aninu.2021.06.010
Songer JG. 1996. Clostridial enteric diseases of domestic animals. Clinical Microbiology Reviews, 9: 216–234. DOI: 10.1128/cmr.9.2.216
Tahmoorespur M, Azghandi M, Javadmanesh A, Meshkat Z & Sekhavati MH. 2019. A Novel chimeric anti‑HCV peptide derived from camel lactoferrin and molecular level insight on its interaction with E2. International Journal of Peptide Research and Therapeutics, 3: 1593-1605. DOI: 10.1007/s10989-019-09972-7
Tang J, Ghazali FM, AbdulAziz S, Nishibuchi M & Radu S. 2009. Comparison of thermophilic Campylobacter spp. occurrence in two types of retail chicken samples. International Food Research Journal, 16: 277–288.
Tanhaeian A, Shahriari Ahmadi F, Sekhavati MH & Mamarabadi M. 2018a. Expression and purification of the main component contained in camel milk and its antimicrobial activities against bacterial plant pathogens. Probiotics and Antimicrobial Proteins, 10(4): 787-793. DOI: 10.1007/s12602-018-9416-9
Tanhaeian A, Azghandi M, Razmyar J, Mohammadi E & Sekhavati MH. 2018b. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microbial Pathogenesis, 122: 73–78. DOI:10.1016/j.micpath.2018.06.012
Tanhaeian A, Jaafari MR, Shahriari Ahmadi F, Vakili‐Ghartavol R & Sekhavati MH. 2018c. Secretory expression of a chimeric peptide in Lactococcus lactis: assessment of its cytotoxic activity and a deep view on its interaction with cell-surface glycosaminoglycans by molecular modeling. Probiotics and Antimicrobial Proteins. 11(3): 1034-1041. DOI: 10.1007/s12602-018-9496-6
Timbermont L, Haesebrouck F, Ducatelle R & Van Immerseel F. 2011. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathology. 40: 341–347. DOI: 10.1080/03079457.2011.590967
Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F & Ducatelle R. 2004. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathology, 33: 537–549. DOI: 10.1080/03079450400013162
Wang S, Xiangfang Z, Qing Y & Shiyan Q. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. International Journal of Molecular Sciences, 17: 603. DOI: 10.3390/ijms17050603
Wu Y, Shao Y, Song B, Zhen W, Wang Z, Guo Y, Shahid MS & Nie W. 2018. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens induced necrotic enteritis. Poultry Science, 97: 2654–2666. DOI: 10.3382/ps/pey119
Yoon JH, Ingale SL , Kim JS , Kim KH, Lohakare J, Kyung Park Y, Cheol Park J, Kwon IK & Chae BJ. 2013. Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs. Journal of the Science of Food Agriculture, 93: 587–592. DOI: 10.1002/jsfa.5840