A Review on Enhancing Gut Health in Poultry: Probiotic Stability, Stress Management, and Encapsulation Strategies

Document Type : Review

Author

Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China

Abstract

The gut serves in the digestion of foods, the absorption of nutrients, and the maintenance of the host's health. Intestinal flora maintains a healthy gut by interacting with intestinal cells and inhibiting pathogens from adhering to the gut wall. Probiotics are widely used to regulate intestinal microflora, prevent and treat intestinal disorders,, and promote growth by replacing antibiotics in poultry. The current paper focuses on the effects of probiotics on gut health in general and stress factors that affect probiotic survivability from handling to the host animal's distal intestinal tract. We also go through the various ways of dealing with these stressful factors and methods adopted for industrial use. The use of encapsulation to preserve probiotics has been proven to be effective. The encapsulation strategy directly benefits stability by providing a physical barrier to safeguard them from unfavorable environments. Probiotics have been encapsulated using a variety of approaches. Here, we also discuss the effects of encapsulation on probiotic stability during different stages from processing to animal gut. Choosing the appropriate encapsulating process and encapsulating material during is crucial for producing the best microcapsule as an additive for animal feed, which ultimately improves the animal's intestinal health.

Keywords


Abd-Talib N, Hamidah Mohd-Setapar S, Kamal Khamis A, Nian-Yian L & Aziz R. 2013. Survival of encapsulated probiotics through spray drying and non-refrigerated storage for animal feeds application. Agricultural Sciences, 04(05): 78–83. DOI:10.4236/as.2013.45b015
Afzaal M, Khan AU, Saeed F, Arshad MS, Khan MA, Saeed M, Maan AA, Khan MK, Ismail Z, Ahmed A, Tufail T, Ateeq H & Anjum FM. 2020a. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Science and Nutrition, 8(3): 1649–1656. DOI:10.1002/fsn3.1451
Afzaal M, Saeed F, Saeed M, Azam M, Hussain S, Mohamed AA, Alamri MS & Anjum FM. 2020b. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal and thermal conditions. International Journal of Food Properties, 23(1): 1899–1912. DOI:10.1080/10942912.2020.1826513
Ahn JB, Hwang HJ & Park JH. 2001. Physiological responses of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen. Journal of Microbiology and Biotechnology, 11(3): 443–451.
Ajuwon KM. 2016. Toward a better understanding of mechanisms of probiotics and prebiotics action in poultry species. Journal of Applied Poultry Research, 25(2): 277–283. DOI:10.3382/japr/pfv074
Alemzadeh E & Oryan A. 2020. Application of Encapsulated Probiotics in Health Care. Journal of Experimental Pathology, 1(1): 16–21. DOI:10.33696/pathology.1.003
Amerah AM, Quiles A, Medel P, Sánchez J, Lehtinen MJ & Gracia MI. 2013. Effect of pelleting temperature and probiotic supplementation on growth performance and immune function of broilers fed maize/soy-based diets. Animal Feed Science and Technology, 180(1–4): 55–63. DOI:10.1016/j.anifeedsci.2013.01.002
Anandharaj M, Rani RP & Swain MR. 2017. Production of High-Quality Probiotics by Fermentation. In Microbial Functional Foods and Nutraceuticals (Issue January 2018). DOI:10.1002/9781119048961.ch10
Bajagai YS, J.Dart P & Wayne LB. 2010. Probiotics in animal nutrition and health. In Beneficial Microbes (Vol. 1, Issue 1). DOI:10.3920/BM2008.1002
Barajas-Álvarez P, González-Ávila M & Espinosa-Andrews H. 2022. Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. Lwt, 153(September 2021). DOI:10.1016/j.lwt.2021.112485
Beales N. 2004. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preserva- tives, Low pH, and Osmotic Stress: A Review. Comprehensive Reviews in Food Science and Food Safety, 3: 1–20. DOI:10.15036/arerugi.33.369
Begley M, Gahan CGM & Hill C. 2005. The interaction between bacteria and bile. FEMS Microbiology Reviews, 29(4): 625–651. DOI:10.1016/j.femsre.2004.09.003
Betoret E, Betoret N, Calabuig-Jiménez L, Barrera C & Dalla Rosa M. 2020. Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of l. Salivarius spp. salivarius included into a fruit matrix. Microorganisms, 8(5). DOI:10.3390/microorganisms8050654
Bischoff SC. 2011. “Gut health”: A new objective in medicine? BMC Medicine, 9(1): 24. DOI:10.1186/1741-7015-9-24
Butaye P, Devriese LA & Haesebrouck F. 2003. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews, 16(2): 175–188. DOI:10.1128/CMR.16.2.175-188.2003
Cabello-Olmo M, Oneca M, Torre P, Díaz JV, Encio IJ, Barajas M & Araña M. 2020. Influence of storage temperature and packaging on bacteria and yeast viability in a plant-based fermented food. Foods, 9(3). DOI:10.3390/foods9030302
Callaway TR, Anderson RC, Edrington TS, Genovese KJ, Harvey RB, Poole TL & Nisbet DJ. 2013. Novel methods for pathogen control in livestock pre-harvest: An update. In Advances in Microbial Food Safety (Vol. 1). Woodhead Publishing Limited. DOI:10.1533/9780857098740.4.275
Chavarri M, Maranon I & Carmen M. 2012. Encapsulation Technology to Protect Probiotic Bacteria. In Probiotics (pp. 501–540). DOI:10.5772/50046
Cheng W, Lu J, Li B, Lin W, Zhang Z, Wei X, Sun C, Chi M, Bi W, Yang B, Jiang A & Yuan J. 2017. Effect of functional oligosaccharides and ordinary dietary fiber on intestinal microbiota diversity. Frontiers in Microbiology, 8(SEP): 1–11. DOI:10.3389/fmicb.2017.01750
Condon S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiology Letters, 46(3): 269–280. DOI:10.1016/0378-1097(87)90112-1
Cook MT, Tzortzis G, Charalampopoulos D & Khutoryanskiy VV. 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162(1): 56–67. DOI:10.1016/j.jconrel.2012.06.003
Corcoran BM, Stanton C, Fitzgerald GF & Ross RP. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology, 71(6): 3060–3067. DOI:10.1128/AEM.71.6.3060-3067.2005
Cotter PD & Hill C. 2003. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular Biology Reviews, 67(3): 429–453. DOI:10.1128/mmbr.67.3.429-453.2003
Crittenden R. 2008. Incorporating Probiotics into Foods. In Handbook of Probiotics and Prebiotics, 2nd ed (pp. 58–70). DOI:10.1002/9780470432624
de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V & Soccol CR. 2018. How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8): 2060–2076. DOI:10.1016/j.biotechadv.2018.09.003
Desmond C, Fitzgerald GF, Stanton C, Ross RP, Al DET & Icrobiol APPLENM. 2004. Improved stress tolerance of groesl-overproducing lactococcus lactis and probiotic lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology, 70(43): 5929–5936. DOI:10.1128/AEM.70.10.5929
Ding WK & Shah NP. 2007. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science, 72(9): 446–450. DOI:10.1111/j.1750-3841.2007.00565.x
Dodoo CC, Wang J, Basit AW, Stapleton P & Gaisford S. 2017. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. International Journal of Pharmaceutics, 530(1–2): 224–229. DOI:10.1016/j.ijpharm.2017.07.068
Dong ZL, Wang YW, Song D, Hou YJ, Wang WW, Qi WT, Yun TT & Li AK. 2016. The effects of dietary supplementation of pre-microencapsulated Enterococcus fecalis and the extract of Camellia oleifera seed on growth performance, intestinal morphology, and intestinal mucosal immune functions in broiler chickens. Animal Feed Science and Technology, 212: 42–51. DOI:10.1016/j.anifeedsci.2015.11.014
Erttmann SF & Gekara NO. 2019. Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nature Communications, 10(1): 1–13. DOI:10.1038/s41467-019-11169-x
FAO/WHO. 2002. Guidelines for the Evaluation of Probiotics in Food. 1–11.
Fareez IM, Lim SM, Zulkefli NAA, Mishra RK & Ramasamy K. 2018. Cellulose Derivatives Enhanced Stability of Alginate-Based Beads Loaded with Lactobacillus plantarum LAB12 against Low pH, High Temperature and Prolonged Storage. Probiotics and Antimicrobial Proteins, 10(3): 543–557. DOI:10.1007/s12602-017-9284-8
Fay KT, Ford ML & Coopersmith CM. 2017. The intestinal microenvironment in sepsis. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(10): 2574–2583. DOI:10.1016/j.bbadis.2017.03.005
Fei Y, Chen Z, Han S, Zhang S, Zhang T, Lu Y, Berglund B, Xiao H, Li L & Yao M. 2021. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition, 63(8): 1037–1054. DOI:10.1080/10408398.2021.1958744
Feng T & Wang J. 2020. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1). DOI:10.1080/19490976.2020.1801944
Fenster K, Freeburg B, Hollard C, Wong C, Laursen RR & Ouwehand AC. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms, 7(3):1–17. DOI:10.3390/microorganisms7030083
Follonier S, Panke S & Zinn M. 2012. Pressure to kill or pressure to boost: A review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Applied Microbiology and Biotechnology, 93(5): 1805–1815. DOI:10.1007/s00253-011-3854-6
Frakolaki G, Giannou V, Kekos D & Tzia C. 2021. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 1–22. DOI:10.1080/10408398.2020.1761773
Fritzen-Freire CB, Prudêncio ES, Amboni RDMC, Pinto SS, Negrão-Murakami AN & Murakami FS. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1): 306–312. DOI:10.1016/j.foodres.2011.09.020
Fritzen-Freire CB, Prudêncio ES, Pinto SS, Muñoz IB & Amboni RDMC. 2013. Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT - Food Science and Technology, 50(1): 39–44. DOI:10.1016/j.lwt.2012.07.037
Gadde U, Kim WH, Oh ST & Lillehoj HS. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. In Animal Health Research Reviews (Vol. 18, Issue 1, pp. 26–45). Cambridge University Press. DOI:10.1017/S1466252316000207
García-Ruiz A, González de Llano D, Esteban-Fernández A, Requena T, Bartolomé B & Moreno-Arribas MV. 2014. Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiology, 44: 220–225. DOI:10.1016/j.fm.2014.06.015
Gbassi GK & Vandamme T. 2012. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics, 4(1): 149–163. DOI:10.3390/pharmaceutics4010149
Goderska K. 2012. Different Methods of Probiotics Stabilization. Probiotics. DOI:10.5772/50313
Golowczyc MA, Silva J, Teixeira P, De Antoni GL & Abraham AG. 2011. Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties. International Journal of Food Microbiology, 144(3): 556–560. DOI:10.1016/j.ijfoodmicro.2010.11.005
Gyawali I, Paudel R, Rayamajhi K, Khan IA & Dahal G. 2021. Ecofriendly Alternatives to Antibiotics for Improving Growth Performance in Poultry. Matrix Science Pharma, 7(1): 22–26. DOI:10.4103/MTSP.MTSP_14_20
Gyawali I, Zeng Y, Zhou J, Li J, Wu T, Shu G, Jiang Q & Zhu C. 2022. Effect of novel Lactobacillus paracaesi microcapsule on growth performance, gut health and microbiome community of broiler chickens. Poultry Science, 101(8): 101912. DOI:10.1016/j.psj.2022.101912
Gyawali I, Zhou G, Xu G, Li G, Wang Y, Zeng Y, Li J, Zhou J, Zhu C, Shu G & Jiang Q. 2023. Supplementation of microencapsulated probiotics modulates gut health and intestinal microbiota. Food Science and Nutrition, 11(8): 4547–4561. DOI:10.1002/fsn3.3414
Hamner S, McInnerney K, Williamson K, Franklin MJ & Ford TE. 2013. Bile Salts Affect Expression of Escherichia coli O157:H7 Genes for Virulence and Iron Acquisition, and Promote Growth under Iron Limiting Conditions. PLoS ONE, 8(9): 1–14. DOI:10.1371/journal.pone.0074647
Han W, Zhang XL, Wang DW, Li LY, Liu GL, Li AK & Zhao YX. 2013. Effects of microencapsulated Enterococcus fecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in broiler chickens. Journal of Animal Science, 91(9): 4374–4382. DOI:10.2527/jas.2012-5956
Hasan N & Yang H. 2019. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 8: 1–31. DOI:10.7717/peerj.7502
Heidebach T, Först P & Kulozik U. 2010. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering, 98(3): 309–316. DOI:10.1016/j.jfoodeng.2010.01.003
Huyghebaert G, Ducatelle R & Immerseel FV. 2011. An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal, 187(2): 182–188. DOI:10.1016/j.tvjl.2010.03.003
Iaconelli C, Lemetais G, Kechaou N, Chain F, Bermúdez-Humarán LG, Langella P, Gervais P & Beney L. 2015. Drying process strongly affects probiotics viability and functionalities. Journal of Biotechnology, 214: 17–26. DOI:10.1016/j.jbiotec.2015.08.022
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M & Reddy DN. 2015. Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29): 8836–8847. DOI:10.3748/wjg.v21.i29.8787
Jantzen M, Göpel A & Beermann C. 2013. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. Journal of Applied Microbiology, 115(4): 1029–1036. DOI:10.1111/jam.12293
Jha R, Das R, Oak S & Mishra P. 2020. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals, 10: 1–18.
Jha R, Fouhse JM, Tiwari UP, Li L & Willing BP. 2019. Dietary fiber and intestinal health of monogastric animals. In Frontiers in Veterinary Science (Vol. 6, Issue MAR, pp. 1–12). DOI:10.3389/fvets.2019.00048
Jiménez-Moreno E, González-Alvarado JM, de Coca-Sinova A, Lázaro R & Mateos GG. 2009. Effects of source of fibre on the development and pH of the gastrointestinal tract of broilers. Animal Feed Science and Technology, 154(1–2): 93–101. DOI:10.1016/j.anifeedsci.2009.06.020
Kalia S, Bharti VK, Gogoi D, Giri A & Kumar B. 2017. Studies on the growth performance of different broiler strains at high altitude and evaluation of probiotic effect on their survivability. Scientific Reports, 7(April): 1–8. DOI:10.1038/srep46074
Kang TS, Korber DR & Tanaka T. 2013. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. AMB Express, 3(1): 1–9. DOI:10.1186/2191-0855-3-10
Khan RU & Naz S. 2013. The applications of probiotics in poultry production. World’s Poultry Science Journal, 69(3): 621–632. DOI:10.1017/S0043933913000627
Kiarie EG & Mills A. 2019. Role of feed processing on gut health and function in pigs and poultry: Conundrum of optimal particle size and hydrothermal regimens. Frontiers in Veterinary Science, 6(FEB): 1–13. DOI:10.3389/fvets.2019.00019
Kulkarni S, Haq SF, Samant S & Sukumaran S. 2018. Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiotics and Antimicrobial Proteins, 10(4): 717–727. DOI:10.1007/s12602-017-9321-7
Lange K, Buerger M, Stallmach A & Bruns T. 2016. Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3): 260–268. DOI:10.1159/000443360
Lasta EL, da Silva Pereira Ronning E, Dekker RFH & da Cunha MAA. 2021. Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars. Scientific Reports, 11(1): 1–12. DOI:10.1038/s41598-021-00077-0
Lee K, Lillehoj HS & Siragusa GR. 2010. Direct-fed microbials and their impact on the intestinal microflora and immune system of chickens. Journal of Poultry Science, 47(2): 106–114. DOI:10.2141/jpsa.009096
Lemetais G, Dupont S, Beney L & Gervais P. 2012. Air-drying kinetics affect yeast membrane organization and survival. Applied Microbiology and Biotechnology, 96(2): 471–480. DOI:10.1007/s00253-012-4014-3
Lian WC, Hsiao HC & Chou CC. 2002. Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology, 74(1–2): 79–86. DOI:10.1016/S0168-1605(01)00733-4
Ma J, Xu C, Liu F, Hou J, Shao H & Yu W. 2021. Stress adaptation and cross-protection of Lactobacillus plantarum KLDS 1.0628. CYTA - Journal of Food, 19(1): 72–80. DOI:10.1080/19476337.2020.1859619
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E & Perdigón G. 2019. Beneficial effects of probiotic consumption on the immune system. Annals of Nutrition and Metabolism, 74(2): 115–124. DOI:10.1159/000496426
Mandal S, Puniya AK & Singh K. 2006. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16(10): 1190–1195. DOI:10.1016/j.idairyj.2005.10.005
Margolles A & Sánchez B. 2012. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid. Applied and Environmental Microbiology, 78(9): 3338–3342. DOI:10.1128/AEM.00129-12
Min M, Bunt CR, Mason SL, Bennett GN & Hussain MA. 2017. Effect of non-dairy food matrices on the survival of probiotic bacteria during storage. Microorganisms, 5(3): 1–7. DOI:10.3390/microorganisms5030043
Misra S, Pandey P, Dalbhagat CG & Mishra HN. 2022a. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. Food and Bioprocess Technology, 15(1). DOI:10.1007/s11947-021-02753-5
Misra S, Pandey P, Dalbhagat CG & Mishra HN. 2022b. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. In Food and Bioprocess Technology (Vol. 2000, Issue 0123456789). Springer US. DOI:10.1007/s11947-021-02753-5
Mizielińska M, Sobecka K, Jarosz M, Urbański D, Stobińska M, Łukawska B, Olchawa E & Bartkowiak A. 2017. The influence of immobilization and packaging on the viability of probiotics stored at 25 °C. Wsn, 77(2): 124–143.
Mortazavian AM, Ehsani MR, Mousavi SM, Sohrabvandi S & Reinheimer JV. 2006. Combined effects of temperature-related variables on the viability of probiotic micro-organisms in yogurt. Australian Journal of Dairy Technology, 61(3): 248–252.
Okumura R & Takeda K. 2017. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental and Molecular Medicine, 49(5): e338-8. DOI:10.1038/emm.2017.20
Pénicaud C, Monclus V, Perret B, Passot S & Fonseca F. 2018. Life cycle assessment of the production of stabilized lactic acid bacteria for the environmentally-friendly preservation of living cells. Journal of Cleaner Production, 184: 847–858. DOI:10.1016/j.jclepro.2018.02.191
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M & Gil A. 2019. Mechanisms of Action of Probiotics. Advances in Nutrition, 10: S49–S66. DOI:10.1093/advances/nmy063
Pradipta MSI, Harimurti S & Widodo W. 2019. Feed Supplementation with Encapsulated Indigenous Probiotic Lactic Acid Bacteria Increased Broiler Chicken Performance. ASEAN Journal on Science and Technology for Development, 36(1): 29–34. DOI:10.29037/ajstd.569
Quraishi MN, Sergeant M, Kay G, Iqbal T, Chan J, Constantinidou C, Trivedi P, Ferguson J, Adams DH, Pallen M & Hirschfield GM. 2017. The gut-adherent microbiota of PSC-IBD is distinct to that of IBD. Gut, 66(2): 386–388. DOI:10.1136/gutjnl-2016-311915
Ranadheera CS, Evans CA, Adams MC & Baines SK. 2015. Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat’s milk. Small Ruminant Research, 123(1): 155–159. DOI:10.1016/j.smallrumres.2014.10.012
Rerksuppaphol S & Rerksuppaphol L. 2010. Lactobacillus acidophilus and Bifidobacterium bifidum stored at ambient temperature are effective in the treatment of acute diarrhoea. Annals of Tropical Paediatrics, 30(4): 299–304. DOI:10.1179/146532810X12858955921159
Riaz QUA & Masud T. 2013. Recent Trends and Applications of Encapsulating Materials for Probiotic Stability. Critical Reviews in Food Science and Nutrition, 53(3): 231–244. DOI:10.1080/10408398.2010.524953
Riaz T, Iqbal MW, Saeed M, Yasmin I, Hassanin HAM, Mahmood S & Rehman A. 2019. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. Journal of Microencapsulation, 36(2): 192–203. DOI:10.1080/02652048.2019.1618403
Roos YH & Livney YD. 2016. Food Engineering Series Engineering Foods for Bioactives Stability and Delivery. New York,  USA. 423 Pages.
Saarela M, Alakomi HL, Mättö J, Ahonen AM & Tynkkynen S. 2011. Acid tolerant mutants of Bifidobacterium animalis subsp. lactis with improved stability in fruit juice. LWT - Food Science and Technology, 44(4): 1012–1018. DOI:10.1016/j.lwt.2010.11.004
Sabikhi L, Babu R, Thompkinson DK & Kapila S. 2010. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food and Bioprocess Technology, 3(4): 586–593. DOI:10.1007/s11947-008-0135-1
Sánchez MT, Ruiz MA, Lasserrot A, Hormigo M & Morales ME. 2017. An improved ionic gelation method to encapsulate Lactobacillus spp. bacteria: Protection, survival and stability study. Food Hydrocolloids, 69: 67–75. DOI:10.1016/j.foodhyd.2017.01.019
Shah NP. 2000. Probiotic bacteria: Selective enumeration and survival in dairy foods. Journal of Dairy Science, 83(4): 894–907. DOI:10.3168/jds.S0022-0302(00)74953-8
Sheehan VM, Sleator RD, Fitzgerald GF & Hill C. 2006. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology, 72(3): 2170–2177. DOI:10.1128/AEM.72.3.2170-2177.2006
Shori AB. 2017. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences, 24(1): 1–5. DOI:10.1016/j.hjb.2016.12.008
Šipailienė A & Petraitytė S. 2018. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics and Antimicrobial Proteins, 10(1). DOI:10.1007/s12602-017-9347-x
Sousa S, Gomes AM, Pintado MM, Malcata FX, Silva JP, Sousa JM, Costa P, Amaral MH, Rodrigues D, Rocha-Santos TAP & Freitas AC. 2012. Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Engineering in Life Sciences, 12(4): 457–465. DOI:10.1002/elsc.201200007
Succi M, Tremonte P, Pannella G, Tipaldi L, Cozzolino A, Romaniello R, Sorrentino E & Coppola R. 2017. Pre-cultivation with selected prebiotics enhances the survival and the stress response of Lactobacillus rhamnosus strains in simulated gastrointestinal transit. Frontiers in Microbiology, 8(JUN): 1–11. DOI:10.3389/fmicb.2017.01067
Sun H, Chen Y, Zou X, Li Q, Li H, Shu Y, Li X, Li W, Han L & Ge C. 2016. Salivary secretory immunoglobulin (SIgA) and lysozyme in malignant tumor patients. BioMed Research International, 8701423. DOI:10.1155/2016/8701423
Talwalkar A & Kailasapathy K. 2004. The role of oxygen in the viability of probiotic bacteria with reference to L . acidophilus and Bifidobacterium spp . Current Issues in Intestinal Microbiology, 5(March 2015): 1–8.
Tee WF, Nazaruddin R, Tan YN & Ayob MK. 2014. Effects of encapsulation on the viability of potential probiotic Lactobacillus plantarum exposed to high acidity condition and presence of bile salts. Food Science and Technology International, 20(6): 399–404. DOI:10.1177/1082013213488775
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA & Kopsahelis N. 2019. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7). DOI:10.3390/nu11071591
Tripathi MK & Giri SK. 2014. Probiotic functional foods: Survival of probiotics during processing and storage. In Journal of Functional Foods (Vol. 9, Issue 1, pp. 225–241). Elsevier Ltd. DOI:10.1016/j.jff.2014.04.030
Tuomola E, Crittenden R, Playne M, Isolauri E & Salminen S. 2001. Quality assurance criteria for probiotic bacteria. American Journal of Clinical Nutrition, 73(2 SUPPL.): 393–398. DOI:10.1093/ajcn/73.2.393s
Turner PV. 2018. The role of the gut microbiota on animal model reproducibility. Animal Models and Experimental Medicine, 1(2): 109–115. DOI:10.1002/ame2.12022
Varankovich N, Martinez MF, Nickerson MT & Korber DR. 2017. Survival of probiotics in pea protein-alginate microcapsules with or without chitosan coating during storage and in a simulated gastrointestinal environment. Food Science and Biotechnology, 26(1): 189–194. DOI:10.1007/s10068-017-0025-2
Yao M, Xie J, Du H, McClements DJ, Xiao H & Li L. 2020. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2): 857–874. DOI:10.1111/1541-4337.12532
Yazhini P, Visha P, Selvaraj P, Vasanthakumar P & Chandran V. 2018. Dietary encapsulated probiotic effect on broiler serum biochemical parameters. Veterinary World, 11(9): 1344–1348. DOI:10.14202/vetworld.2018.1344-1348
Yoha KS, Nida S, Dutta S, Moses JA & Anandharamakrishnan C. 2022. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. In Probiotics and Antimicrobial Proteins (Vol. 14, Issue 1). Springer US. DOI:10.1007/s12602-021-09791-7
Yue B, Yu ZL, Lv C, Geng XL, Wang ZT & Dou W. 2020. Regulation of the intestinal microbiota: An emerging therapeutic strategy for inflammatory bowel disease. World Journal of Gastroenterology, 26(30): 4378–4393. DOI:10.3748/WJG.V26.I30.4378
Zeashan M, Afzaal M, Saeed F, Ahmed A, Tufail T, Ahmed A & Anjum FM. 2020. Survival and behavior of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions. Food Science and Nutrition, 8(5): 2419–2426. DOI:10.1002/fsn3.1531
Zhang L, Li J, Yun TT, Qi WT, Liang XX, Wang YW & Li AK. 2015. Effects of pre-encapsulated and pro-encapsulated Enterococcus faecalis on growth performance, blood characteristics, and cecal microflora in broiler chickens. Poultry Science, 94(11): 2821–2830. DOI:10.3382/ps/pev262
Zhao G & Zhang G. 2005. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. Journal of Applied Microbiology, 99(2): 333–338. DOI:10.1111/j.1365-2672.2005.02587.x
Zheng D, Liwinski T & Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Research, 30(6): 492–506. DOI:10.1038/s41422-020-0332-7