Digestible Arginine Requirements in Hy-Line W-36 Laying Hens: Effects on Performance, Egg Characteristics, and Plasma Parameters During 40 to 46 Weeks of Age

Document Type : Original Paper


Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran


This study was conducted to estimate digestible arginine (Arg) requirements for performance and egg quality parameters in Hy-Line W-36 laying hens from 40 to 46 weeks of age. A total of 150 laying hens were arranged in a completely randomized design with 5 treatments, 5 replicates and 6 hens in each. These treatments included 0.81, 0.86, 0.91, 0.96, and 1.01 % digestible Arg. At the end of experiment, data were obtained in performance, egg quality, and quantity parameters as well as plasma levels of cholesterol, uric acid, globulin, and insulin-like growth factor (IGF-1). Results have shown that feed conversion ratio, egg production, and egg mass improved by supplementing 0.86 digestible Arg in the diet compared to other treatments (P < 0.05). Moreover, these items significantly affected by the interaction of treatments and weeks. In the last three weeks of this experiment, the use of 0.86, 0.91, 0.96, and 1.01 % digestible Arg significantly increased egg mass and egg roduction. Plasma concentrations of globulin, cholesterol, and uric acid were not affected by dietary Arg levels. However, a significant increase in plasma IGF-1 was shown by supplementation of % 0.91 Arg (P < 0.05). Based on quadratic equations, the optimum levels of digestible Arg for egg production, egg mass, feed conversion ratio, and IGF-1 were 0.917, 0.917, 0.908, and 0.970%, respectively.


Altan O, Oguz I & Akbas Y. 1998. Effects of selection for high body weight and age of hen on egg characteristics in Japanese quail (cotumix cotumix japonica). Journal of Veterinary and Animal Science, 22: 464-473.
AOAC. 2000. Official Methods of Analysis, 17th ed. AOAC International, Gaithersburg, MD.
Basiouni G, Najib H, Zaki MM & Al-Ankari AS. 2006. Influence of extra supplementation with arginine and lysine on overall performance, ovarian activities and humoral immune response in local Saudi hens. International Journal of Poultry Science, 5(5): 441-448. DOI: 10.3923/ijps.2006.441.448
Basiouni GF. 2009. The effect of feeding an extra amount of arginine to local Saudi hens on luteinizing hormone secretion. Journal of Biological Sciences, 9(6): 617-620. DOI: 10.3923/jbs.2009.617.620
Carlisle EM .1986. Silicon as an essential trace element in animal nutrition, in: Evered, D. and O’Connor, M. (Eds) Silicon Biochemistry. Ciba Foundation Symposium, 121: 123-139.
Carvalho FB, Stringhini JH, Matos MS, Café MB, Leandro NSM, Gomes NA, Santana ES & Jardim Filho RDM. 2015. Egg quality of hens fed different digestible lysine and arginine levels. Brazilian Journal of Poultry Science, 17(1): 63-68. DOI: 10.1590/1516-635x170163-68
Carvalho FB, Stringhini JH, Matos MS, Jardim F, Cafe MB, Leandro NM & Andrade MA. 2012. Performance and nitrogen balance of laying hens fed increasing levels of digestible lysine and arginine. Revista Brasileira de Zootecnia, 41(10): 2183-2188. DOI: 10.1590/S1516-35982012001000007 
Corzo A, Kidd MT, Burnham DJ & Kerr BJ. 2004. Dietary glycine needs of broiler chicks. Poultry Science, 83(8): 1382-1384. DOI: 10.1093/ps/83.8.1382
De Lima MR & da Silva JHV. 2007. Efeito da relação lisina: arginina digestível sobre o desempenho de poedeiras comercias no período de postura. Acta Veterinária Brasílica, 1(4): 118-124. DOI: 10.21708/avb.2007.1.4.519
D'mello JPF. 2003. Amino acids as multifunctional molecules, in: D'mello, J.P.F. Jr. (Ed.). Amino Acids in Animal Nutrition. Pages, 87-101 (CABI Publishing).
Emadi M, Kaveh K, Bejo MH, Ideris A, Jahanshiri F, Ivan M & Alimon RA. 2010. Growth performance and blood parameters as influenced by different levels of dietary arginine in broiler chickens. Journal of Animal and Veterinary Advances, 9(1): 70-74. DOI: 10.3923/javaa.2010.70.74
Fernandes JIM, Murakami AE, Martins EN, Sakamoto MI & Garcia ERM. 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Science, 88(7): 1399-1406. DOI: 10.3382/ps.2008-00214
Fouad AM, El-Senousey HK, Yang XJ & Yao JH. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal: An International Journal of Animal Bioscience, 7(8): 1239-1245. DOI: 10.1017/S1751731113000347
Harms RH & Russell GB. 2001. Evaluation of valine requirement of the commercial layer using a corn-soybean meal basal diet. Poultry Science, 80(2): 215-218. DOI: 10.1093/ps/80.2.215
Isidori A, Lo Monaco A & Cappa M. 1981. A study of growth hormone release in man after oral administration of amino acids. Current Medical Research and Opinion, 7(7): 475-481. DOI: 10.1185/03007998109114287
Jahanian R & Khalifeh‐Gholi M. 2018. Marginal deficiencies of dietary arginine and methionine could suppress growth performance and immunological responses in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 102(1): e11-e20. DOI: 10.1111/jpn.12695
Keener KM, McAvoy KC, Foegeding JB, Curtis PA, Anderson KE & Osborne JA. 2006. Effect of testing temperature on internal egg quality measurements. Poultry Science, 85: 550-555. DOI: 10.1093/ps/85.3.550
Khajali F & Wideman RF. 2010. Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poultry Science Journal, 66(4): 751-766. DOI: 10.1017/S0043933910000711
Lieboldt MA, Frahm J, Halle I, Görs S, Schrader L,
Weigend S, Preisinger R, Metges CC, Breves G, & Dänicke S. 2016. Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine. Poultry Science, 95(3): 595-611.‏ DOI: 10.3382/ps/pev359
Lieboldt MA, Halle I, Frahm J, Schrader L, Weigend S, Preisinger R & Dänicke S. 2015. Effects of long-term graded L-arginine supply on growth development, egg laying and egg quality in four genetically diverse purebred layer lines. The Journal of Poultry Science, 53(1): 8-21. DOI: 10.2141/jpsa.0150067
Liu X, Byrd JA, Farnell M & Ruiz-Feria CA. 2014. Arginine and vitamin E improve the immune response after a Salmonella challenge in broiler chicks. Poultry Science, 93(4): 882-890. DOI: 10.3382/ps.2013-03723
Miao LP, Yuan C, Dong XY, Zhang XY, Zhou MY & Zou XT. 2017. Effects of dietary L-arginine levels on small intestine protein turnover and the expression of genes related to protein synthesis and proteolysis of layers. Poultry Science, 96(6): 1800-1808. DOI: 10.3382/ps/pew471
Najib H & Basiouni GD. 2004. Determination of the nutritional requirements of the Local Saudi chickens. 1. Effect of Arginine inclusion, in excess of the leghorn requirement, on performance of the Local Saudi chickens. Scientific Journal of King Faisal University Basic and Applied Sciences, 5: 121-144.
NRC (National Research Council). 1994. Nutrient Requirements of Poultry. 9th Rev. Ed. National Academy Press. Washington, DC. 176 Pages.
Rubin LL, Canal CW, Ribeiro AL, Kessler A, Silva I, Trevizan L, Viola T, Raber M, Gonçalves TA & Krás R. 2007. Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. Brazilian Journal of Poultry Science, 9(4): 241-247. DOI: 10.1590/S1516-635X2007000400006
SAS (Statistical Analysis System). 2008. SAS/STAT® 9.2. User's Guide. SAS Institute Inc. Cary, North Carolina.
Schutte JB, De Jong J & Bertram HL. 1994. Requirement of the laying hen for sulfur amino acids. Poultry Science, 73(2): 274-280. DOI: 10.3382/ps.0730274
Silva LMGS, Murakami AE, Fernandes JIM, Dalla Rosa D & Urgnani JF. 2012. Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Brazilian Journal of Poultry Science, 14(4): 267-273. DOI: 10.1590/S1516-635X2012000400006
Sugino T, Shirai T, Kajimoto Y & Kajimoto O. 2008. L-ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutrition Research, 28(11): 738-743. DOI: 10.1016/j.nutres.2008.08.008
Tesseraud S, Le Bihan-Duval E, Peresson R, Michel J & Chagneau AM. 1999. Response of chick lines selected on carcass quality to dietary lysine supply: live performance and muscle development. Poultry Science, 78(1): 80-84. DOI: 10.1093/ps/78.1.80
Visser JJ & Hoekman K. 1994. Arginine supplementation in the prevention and treatment of osteoporosis. Medical Hypotheses, 43(5): 339-342. DOI: 10.1016/0306-9877(94)90113-9
Yang H, Ju X, Wang Z, Yang Z, Lu J & Wang W. 2016. Effects of arginine supplementation on organ development, egg quality, serum biochemical parameters, and immune status of laying hens. Brazilian Journal of Poultry Science, 18(1): 181-186. DOI: 10.1590/1516-635x1801181-186
Youssef SF, Badawy MI & Abd El-Halim HAH. 2016. Effect of l-arginine supplementation on productive, reproductive performance, immune response and gene expression in two local chicken strains: 2-responses of offspring. Egyptian Poultry Science Journal, 36: 825 -839.
Yu J, Yang H, Wang Z, Dai H, Xu L & Ling C. 2018. Effects of arginine on the growth performance, hormones, digestive organ development and intestinal morphology in the early growth stage of layer chickens. Italian Journal of Animal Science, 17(4): 1077-1082. DOI: 10.1080/1828051X.2018.1434692
Yuan C, Li JM, Ding Y, He Q, Yan HX, Lu JJ & Zou XT. 2015. Estimation of L-arginine requirement for Xinyang Black laying hens from 33 to 45 weeks of age. Journal of Applied Poultry Research, 24(4): 463-469. DOI: 10.3382/japr/pfv049