Molecular Determinants of Virulence and Antimicrobial Resistance among Enterococcus Species Isolated from Chickens

Document Type : Original Paper

Authors

1 Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria

2 Department of Animal Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria

Abstract

Enterococci cause meat and environmental contamination during slaughter time. In this study, virulence and antimicrobial resistance (AMR) characteristics of enterococci isolated from chickens were determined. A total of 107 cloacal swabs of chickens were inoculated onto Slanetz and Bartley agar and incubated at 37ºC for 24-48 h. Gram staining, catalase, and hemolytic tests were done. AMR was determined using the disc diffusion technique against twelve antimicrobials. Molecular detection of AMR genes: blaZ, aphA, aacA-aphD, ermB, tetL, tetM, and vanC, and virulence factors: agrBEfs, efaAEfs, esp, gelE, and hyl were done on selected isolates using PCR. Ninety-five isolates were Enterococcus species. The isolates showed resistance to tetracycline, cefoxitin, amoxicillin, and imipenem and possessed tetL, tetM, ermB, aphA, vanC, aaca-aphD resistance and gelE, agrBef, efaAfs, espfs and hyl virulence genes. This is the first detection of AMR and virulence genes in multi-drug resistant enterococci among chickens in the locality. These enterococci could constitute a reservoir of virulence and resistance properties which are of animal and public health concern.

Keywords


Abat C, Huart M, Garcia V, Dubourg G & Raoult D. 2016. Enterococcus faecalis urinary-tract infections: do they have a zoonotic origin? Journal of Infection, 73: 305–313. DOI: 10.1016/j.jinf.2016.07.012
Agarwal J, Kalyan R & Singh M. 2009. High-level aminoglycoside resistance and -lactamase production in enterococci at a tertiary care hospital in India. Japanese Journal of Infectious Diseases, 62: 158–159. PMID: 19305061.
Ahmed MO & Baptiste KE. 2018. Vancomycin-Resistant Enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microbial Drug Resistance, 24: 590-606. DOI: 10.1089/mdr.2017.0147
Ali SA, Hasan KA, Bin Asif H & Abbasi A. 2013. Environmental enterococci: I. Prevalence of virulence, antibiotic resistance and species distribution in poultry and its related environment in Karachi, Pakistan. Letters in Applied Microbiology, 58: 423–432. DOI: 10.1111/lam.12208
Amaechi N & Nwankwo IU. 2015. Evaluation of prevalence and antimicrobial resistance using enterococci isolates from pigs and poultry birds in Abia state, Nigeria. International Journal of Current Microbiology and Applied Sciences, 4 (2): 825-833.
Argudín MA, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C & Roisin S. 2017. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics, 6: 12. DOI: 10.3390/antibiotics6020012
Ayeni FA,  Odumosu BT, Oluseyi AE & Ruppitsch W. 2016. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria.  Journal of Pharmacy and Bioallied Sciences, 8 (1): 69–73.  DOI: 10.4103/0975-7406.171729
Azizi M, Hasanvand B, Kashef M, Alvandi AH & Abiri R. 2017. Virulence factor and biofilm formation in clinical enterococcal isolates of the west of Iran. Jundishapur Journal of Microbiology, 10(7): e14379. DOI: 10.5812/jjm.14379
Bell JM, Paton JC & Turnidge J. 1998. Emergence of vancomycin-resistant enterococci in Australia: phenotypic and genotypic characteristics of isolates. Journal of Clinical Microbiology, 36: 2187-90. DOI: 10.1128/JCM.36.8.2187-2190.1998
Bhardwaj SB. 2019 Enterococci: An important nosocomial pathogen. DOI: 10.5772/intechopen.90550
Cancilla MR, Powell LB, Hillier AJ & Davidson BE. 1992. Rapid genomic fingerprinting of Lactococcus lastis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Applied and Environmental Microbiology, 58: 1772-1775. DOI: 10.1128/aem.58.5.1772-1775.1992
Cauwerts K, Decostere A, De Graef EM, Haesebrouck F & Pasmans F. 2007. High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathololgy, 36: 395–399. DOI: 10.1080/03079450701589167
Chajęcka-Wierzchowska W, Zadernowska A & Łaniewska-Trokenheim L. 2017. Virulence factors of Enterococcus spp. presented in food. LWT- Food Science and Technology, 75: 670–676. DOI: 10.1016/j.lwt.2016.10.026
CLSI. 2018. Clinical and Laboratory Standards Institute. Performance standards of antimicrobial susceptibility testing. Twenty-second information supplement, CLSI Document 2018; M10 0-S22, Wayne. PA.
Conwell M, Daniels V, Naughton PJ & Dooley JSG. 2017. Interspecies transfer of vancomycin, erythromycin and tetracycline resistance among Enterococcus species recovered from agrarian sources. BMC Microbiology, 17: 19. DOI: 10.1186/s12866-017-0928-3
Del Papa MF, Hancock LE, Thomas VC & Perego M. 2007. Full activation of Enterococcus faecalis gelatinase by a C-terminal proteolytic cleavage.  Journal of Bacteriology, 189 (24):  8835–8843. DOI: 10.1128/JB.01311-07
Devriese LA, Pot B & Collins MD. 1993. Phenotypic identification of the genus Enterococcus and                               differentiation of phylogenetically distinct enterococcal species and species groups. Journal of Applied Bacteriology, 75: 399–408. DOI: 10.1111/j.1365-2672.1993.tb02794.x
Dolka B, Cisek AA & Szeleszczuk P. 2019. The application of the loop-mediated isothermal amplification (LAMP) method for diagnosing Enterococcus hirae-associated endocarditis outbreaks in chickens. BMC Microbiology, 19: 48. DOI: 10.1186/s12866-019-1420-z
Dupre I, Zanetti S, Schito AM, Fadda G & Sechi LA. 2003. Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). Journal of Medical Microbiology, 52: 491-498. DOI: 10.1099/jmm.0.05038-0
Farman M, Yasir M, Al-Hindi RR, Farraj SA, Jiman-Fatani AA, Alawi M & Azhar EI. 2019. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrobial Resistance and Infection Control, 8: 55. DOI: 10.1186/s13756-019-0508-4
Flores-Mireles AL, Walker JN, Caparon M & Hultgren SJ. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13: 269–284. DOI: 10.1038/nrmicro3432
Fracalanza SS, Scheidegger E, Santos P, Leita P & Teizeira L. 2007. Antimicrobial resistance profiles of enterococci isolated from poultry meat and pasteurized milk in Reo De Janecro. Memórias do Instituto Oswaldo Cruz, 102: 853-859.  DOI: 10.1590/S0074-02762007005000120
Hanchi H, Mottawea W, Sebei K & Hammami R. 2018. The genus Enterococcus: between probiotic potential and safety concerns—an update. Frontiers in Microbiology, 9: 1791. DOI: 10.3389/fmicb.2018.01791
Hasan KA, Ali SA, Rehman M, Bin-Asif H & Zahid S. 2018. The unravelled Enterococcus faecalis zoonotic superbugs: Emerging multiple resistant and virulent lineages isolated from poultry environment. Zoonoses and Public Health, 65 (8): 921–935. DOI: 10.1111/zph.12512
Hegstad K, Mikalsen T, Coque TM, Werner G & Sundsfjord A. 2010. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clinical Microbiology and Infection, 16: 541–554. DOI: 10.1111/j.1469-0691.2010.03226.x
Heidari H, Emaneini M, Dabiri H & Jabalameli F. 2016. Virulence factors, antimicrobial resistance pattern and molecular analysis of enterococcal strains isolated from burn patients. Microbial Pathogenesis, 90: 93–97.  DOI: 10.1016/j.micpath.2015.11.017
Hirt H, Greenwood-Quaintance KE, Karau MJ, Till LM, Kashyap PC, Patel R & Dunny GM. 2018. Enterococcus faecalis sex pheromone cCF10 enhances conjugative plasmid transfer in vivo. mBio, 9 (1): e00037-18. DOI: 10.1128/mBio.00037-18
Hynes WL & Walton SL. 2000. Hyaluronidases of Gram-positive bacteria. FEMS Microbiology Letters, 183: 201–720. DOI: 10.1111/j.1574-6968.2000.tb08958.x
Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG & Mate MIN. 2020. Antimicrobial use and resistance in food producing animals and the environment: an African perspective. Antimicrobial Resistance and Infection Control, 9: 37. DOI: 10.1186/s13756-020-0697-x
Kiruthiga A, Padmavathy K, Shabana P, Naveenkumar V, Gnanadesikan S & Malaiyan J. 2020. Improved detection of esp, hyl, asa1, gelE, cylA virulence genes among clinical isolates of Enterococci. BMC Research Notes, 13: 170.  DOI: 10.1186/s13104-020-05018-0
Laverde Gomez JA, van Schaik W, Freitas AR, Coque TM, Weaver KE, Francia MV, Witte W & Werner G. 2011. A multi-resistance mega-plasmid pLG1 bearing a hylEfm genomic island in hospital Enterococcus faecium isolates. International Journal of Medical Microbiology, 301 (2): 165–175. DOI: 10.1016/j.ijmm.2010.08.015
Madsen KT, Skov MN, Gill S & Kemp M. 2017. Virulence factors associated with Enterococcus faecalis infective endocarditis: a mini review. The Open Microbiology Journal, 11: 1-11. DOI: 10.2174/1874285801711010001
Manson AL, Van Tyne D, Straub TJ, Clock S, Crupain M, Rangan U, Gilmore MS & Earl AM. 2019. Chicken meat-associated enterococci: influence of agricultural antibiotic use and connection to the clinic. Applied and Environmental Microbiology, 85: e01559-19.  DOI: 10.1128/AEM.01559-19
Manyi-Loh C, Mamphweli S, Meyer E & Okoh A. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23: 795. DOI: 10.3390/molecules23040795
Mehdi Y, Letourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Cot C, Ramirez AA & Godbout S. 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4: 170-178. DOI: 10.1016/j.aninu.2018.03.002
Melese A, Genet C & Andualem T. 2020. Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC Infectious Diseases, 20: 124.  DOI: 10.1186/s12879-020-4833-2
Miller WR, Munita JM & Arias CA. 2014. Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-infective Therapy, 12 (10): 1221–1236. DOI:10.1586/14787210.2014.956092
Munita JM & Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiology Spectrum, 4: 2. DOI: 10.1128/microbiolspec
Nowakiewicz A, Ziólkowska G, Troscianczyk A, Zieba P & Gnat S. 2017. Determination of resistance and virulence genes in Enterococcus faecalis and E. faecium strains isolated from poultry and their genotypic characterization by ADSRRS-fingerprinting. Poultry Science, 96 (4):986-996. DOI: 10.3382/ps/pew365
Olawale KO, Fadiora SO & Taiwo SS. 2011. Prevalence of hospital-acquired enterococci infections in two primary-care hospitals in Osogbo, Southwestern Nigeria. African Journal of Infectious Diseases, 5 (2): 40-46. DOI: 10.4314/ajid.v5i2.66513
Oluwasile BB, Agbaje M, Ojo OE & Dipelu MA. 2014. Antibiotic usage pattern in selected poultry farms in Ogun state. Sokoto Journal of Veterinary Science, 12 (1): 45-50. DOI: 10.4314/sokjvs.v12i1.7
Popović N, Dinić M, Tolinački M, Mihajlović S, Terzić-Vidojević A, Bojić S, Djokić J, Golić N & Veljović K. 2018. New insight into biofilm formation ability, the presence of virulence genes and probiotic potential of Enterococcus sp. dairy isolates. Frontiers in Microbiology, 9: 78. DOI: 10.3389/fmicb.2018.00078
Price VJ, McBride SW, Hullahalli K, Chatterjee A, Duerkop BA & Palmer KL. 2019. Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere 4: e00464-19. DOI: 10.1128/mSphere.00464-19
Ramos Y, Rocha J Hael AL, van Gestel J, Vlamakis H, Cywes-Bentley C, Cubillos-Ruiz JR, Pier GB, Gilmore MS, Kolter R & Morales DK. 2019. PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLoS Pathogens, 15 (2): e1007571. DOI 10.1371/journal.ppat.1007571
Reynolds PE & Courvalin P. 2005. Vancomycin resistance by synthesis of precursors terminating in D-alanyl-D-alanine, Antimicrob Agents Chemother, 49: 21-5. DOI: 10.1128/AAC.49.1.21-25.2005
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I & Tuohy K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57: 1–24. DOI 10.1007/s00394-017-1445-8
Saha B, Singh AK, Ghosh A & Bal M. 2008. Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). Journal of Medical Microbiology, 57 (1):72-79. DOI: 10.1099/jmm.0.47144-0
Sanlibaba P, Tezel BU & Senturk E. 2018. Antimicrobial Resistance of Enterococcus Species Isolated from Chicken in Turkey. Korean Journal for Food Science of Animal Resources, 38 (2):391~402. DOI 10.5851/kosfa.2018.38.2.391  
Sørensen TL, Blom M, Monnet DL, Frimodt-Møller N, Poulsen RL & Espersen F. 2001. Transient intestinal carriage after ingestion of antibiotic-resistant Enterococcus faecium from chicken and pork. New England Journal of Medicine, 345(16): 1161-1166.  DOI: 10.1056/NEJMoa010692
Starr CR & Engleberg NC. 2006. Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infection and Immunity, 74 (1): 40-48. DOI: 10.1128/IAI.74.1.40-48.2006
Stępień-Pyśniak D, Hauschild T, Kosikowska U, Dec M & Urban-Chmie R. 2019. Biofilm formation capacity and presence of virulence factors among commensal Enterococcus spp. from wild birds. Scientific Reports, 9:11204. DOI 10.1038/s41598-019-47602-w
Tian Y, Yu H & Wang Z. 2019. Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC Research Notes, 12: 27. DOI 10.1186/s13104-019-4064-z
Top J, Willems R, Blok H, de Regt M, Jalink K, Troelstra A, Goorhuis B & Bonten M. 2007. Ecological replacement of Enterococcus faecalis by multiresistant clonal complex 17 Enterococcus faecium. Clinical Microbiology and Infection, 13:
316–319. DOI: 10.1111/j.1469-0691.2006.01631.x
Ünal N, Aşkar Ş & Yildirim M. 2017. Antibiotic resistance profile of Enterococcus faecium and Enterococcus faecalis isolated from broiler cloacal samples. Turkish Journal of Veterinary and Animal Sciences, 41 (2): 199–203. DOI: 10.3906/vet-1607-26
Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D & Goossens H. 2004. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. Journal of Clinical Microbiology, 42: 4473–4479. DOI: 10.1128/JCM.42.10.4473-4479.2004
Weng PL, Ramli R & Hamat RA. 2019. Antibiotic susceptibility patterns, biofilm formation and esp gene among clinical enterococci: is there any association? International Journal of Environmental Research and Public Health, 16: 3439. DOI:10.3390/ijerph16183439
Wist V, Morach M, Schneeberger M, Cernela N, Stevens MJA, Zurfluh K, Stephan R & Nüesch-Inderbinen M. 2020. Phenotypic and genotypic traits of vancomycin resistant enterococci from healthy food producing animals. Microorganisms, 8: 261. DOI: 10.3390/microorganisms8020261
Xu J, Sangthong R, Edward McNeil E, Tang R & Chongsuvivatwong V. 2020. Antibiotic use in chicken farms in northwestern China. Antimicrobial Resistance and Infection Control, 9: 10. DOI: 10.1186/s13756-019-0672-6
Yoshimura H, Ishimaru M, Endoh YS & Kojima A. 2000. Antimicrobial susceptibility of Enterococci species isolated from faeces of broiler and layer chickens. Letters in Applied Microbiology, 31: 427-432. DOI: 10.1046/j.1365-2672.2000.00842.x
Zalipour M, Esfahani BN & Havaei SA. 2019. Phenotypic and genotypic characterization of glycopeptide, aminoglycoside and macrolide resistance among clinical isolates of Enterococcus faecalis: a multicenter based study. BMC Research Notes, 12: 292. DOI: 10.1186/s13104-019-4339-4
Zehra A, Singh R, Kaur S & Gill JPS. 2017. Molecular characterization of antibiotic-resistant Staphylococcus aureus from livestock (bovine and swine). Veterinary World, 10 (6): 598-604. DOI: 10.14202/vetworld.2017.598-604