Comparison of Different Non-Linear Models for Describing Plasma Lysozyme Activity in Quail

Document Type : Original Paper

Authors

1 Department of Animal Science, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Department of Ostrich, Special Domestic Animals Institute, Research Institute of Zabol, Zabol, Iran

Abstract

Lysozyme activity is one of the nonspecific immunity parameters measured by changing the amount of adsorption at different times. The objective of the present study was to compare five non-linear models including Gompertz, Richards, Logistic, Lopez, and Weilbull to describe the cumulative plasma lysozyme activity in quails. In total 1364 plasma samples (1004 females and 360 males) were collected and the cumulative lysozyme activity was calculated by turbidimetric method assay in Micrococcus luteus. The goodness-of-fit of models was compared according to different criteria of Maximum log-likelihood, Akaike information criterion, Mean square error, and Bayesian information criterion. The results showed that the Gompertz model was the best model for describing of decreasing cumulative pattern of lysozyme activity in female and male quails and provided satisfactory predictions of lysozyme activity at different times (30, 60, 90, 120, 150, 180, 210, 240, 270, 300 seconds). The parameters of all models were higher in females than males except for the k parameter which was greater in the males. Male quails had higher values for time and lysozyme activity than females at inflection points, whereas the absolute growth rate in 30, 150, and 300 seconds was predicted higher in female quails. In conclusion, the Gompertz model can be used accurately to evaluate cumulative lysozyme activity patterns in both sexes of quails.

Keywords


Adenaike A, Akpan U, Udoh JE, Wheto M, Durosaro SO, Sanda AJ & Ikeobi CON. 2017. Comparative evaluation of growth functions in three broiler strains of Nigerian chickens. Pertanika Journal of Tropical Agricultural Science, 40: 611-620.
Aggrey S. 2002. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81: 1782-1788. DOI: 10.1093/ps/81.12.1782
Alkan S, Mendes M, Karabag K & Balcioglu M. 2009. Effect of short-term divergent selection for 5-week body weight on growth characteristics of Japanese quail. Archive Fur Gefluegelkunde, 73: 124-131.
Bao M, Bovenhuis H, Nieuwland M, Parmentier H & Van der Poel J. 2015. Genetic parameters of IgM and IgG antibodies binding autoantigens in healthy chickens. Poultry Science, 95: 458-465. DOI: 10.3382/ps/pev347
Bindya LA, Murthy HNN, Jayashankar MR & Govindaiah AM. 2010. Mathematical models for egg production in an Indian colored broiler dam line. International Journal of Poultry Science, 9(9): 916-919. DOI: 10.3923/ijps.2010.916.919
Cooper RG. 2005. Growth in the ostrich (Struthiocamelus var. domesticus). Animal Science Journal, 76: 1-4. DOI: 10.1111/j.1740-0929.2005.00230.x
Darmani Kuhi H & France J. 2019. Modelling cumulative egg production in laying hens and parent stocks of broiler chickens using classical growth functions. British Poultry Science, 60(5): 564-569. DOI: 10.1080/00071668.2019.1622080
Darmani Kuhi H, Porter T, López S, Kebreab E, Strathe A, Dumas A, Dijkstra J & France J. 2010. A review of mathematical functions for the analysis of growth in poultry. World's Poultry Science Journal, 66(02): 227-240. DOI: 10.1017/S0043933910000280
Faraji-Arough H, Rokouei M, Maghsoudi A & Ghazaghi M. 2018. Comparative study of growth patterns in seven strains of Japanese quail using nonlinear regression modeling. Turkish Journal of Veterinary and Animal Science, 42(5): 441-451. DOI: 10.3906/vet-1801-13
Faraji-Arough H, Rokouei M, Maghsoudi A & Mehri M. 2019. Evaluation of non- linear growth curves models for native slow-growing Khazak chickens. Poultry Science Journal, 7(1): 25-32. DOI: 10.22069/psj.2019.15535.1355
Fitzhugh H. 1976. Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, 42(4): 1036-1051. DOI: 10.22069/10.2527/jas1976.4241036x
Garcia V, Catala-Gregori P, Hernandez F, Megias M & Madrid J. 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research, 16: 555-562. DOI: 10.3382/japr.2006-00116
Gavora JS & Spencer JL. 1979. Studies of genetic resistance of chickens to Marek’s disease - A review. Comparative Immunology, Microbiology and Infectious Diseases, 2: 359. DOI: 10.1016/0147-9571(79)90022-5
Goerlich VC, Nätt D, Elfwing M, Macdonald B & Jensen P. 2012. Transgene rational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Hormones and Behavior, 61(5): 711–718. DOI: 10.1016/j.yhbeh.2012.03.006
Goto T, Goto N, Shiraishi JI, Bungo T & Tsudzuki M. 2010. Comparison of growth curves of four breeds of Japanese native chicken, Onaga-dori, Tosa-jidori, Ukokkei and Hinai-dori. Journal of Animal Veterinary Advances, 9: 1362-1365. DOI: 10.3923/javaa.2010.1362.1365
Holloway J, Shoemaker CA & Ottinger CA. 1993. Serum lysozyme levels in paddlefish and walleye. Journal of Aquatic Animal Health, 5: 324–326. DOI: 10.1577/1548-8667(1993)005<0324:SLLIPA>2.3.CO;2
Huopalahti R, Anton M, López-Fandiño R & Schade R. 2007. Bioactive egg compounds. Springer-Verlag Berlin Heidelberg. pp. 33-42.
Jiang CM, Wang MC, Chang WH & Chang HM. 2001. Isolation of lysozyme from hen egg albumen by alcohol‐insoluble cross‐linked pea pod solid ion‐exchange chromatography. Journal of Food Science, 66 (8): 1089-1093. DOI: 10.1111/J.1365-2621.2001.TB16086.X
Jolles P & Jolles J. 1984. What’s new in lysozyme research? Always a model system, today as yesterday. Molecular and Cellular Biochemistry, 63: 165–189. DOI: 10.1007/BF00285225
Karkach A. 2006. Trajectories and models of individual growth. Demographic Research, 15: 347-400. DOI: 10.4054/DemRes.2006.15.12
Kumari J, Sahoo PK, Swain T, Sahoo SK, Sahu B & Mohanty BR. 2006. Seasonal variation in the innate immune parameters of the Asia catfish Clarias batrachus. Aquaculture, 252: 121-127. DOI: 10.1016/j.aquaculture.2005.07.025
Leshchinsky TV & Klasing KC. 2001. Divergence of the inflammatory response in two types of chickens. Developmental and Comparative Immunology, 25: 62-638. DOI: 10.1016/s0145-305x(01)00023-4
Manjula P, Park HB, Yoo J, Wickramasuriya S, Seo DW, Choi NR, Kim CD, Kang BS, Oh KS & Sohn SH. 2016. Comparative study on growth patterns of 25 commercial strains of Korean native chicken. Korean Journal of Poultry Science, 43: 1-14. DOI: 10.5536/KJPS.2016.43.1.1
Masoudi A & Azarfar A. 2017. Comparison of nonlinear models describing growth curves of broiler chickens fed on different levels of corn bran. International Journal of Avian and Wildlife Biology, 2: 1-7.  DOI: 10.15406/ijawb.2017.02.00012
Minvielle F. 1998. Genetics and breeding of Japanese quail for production around the world. Proceedings of the 6th Asian Pacific Poultry Congress. Nagoya, Japan.
Moharrery A & Mirzaei M. 2014. Growth characteristics of commercial broiler and native chickens as predicted by different growth functions. Journal of Animal Feed Science, 23: 82-89. DOI: 10.22358/jafs/65720/2014
Nahashon S, Aggrey S, Adefope N & Amenyenu A. 2006. Modeling growth characteristics of meat-type guinea fowl. Poultry Science, 85(5): 943-946. DOI: 10.1093/ps/85.5.943
Narinc D, Aksoy T & Karaman E. 2010. Genetic parameters of growth curve parameters and weekly body weights in Japanese quail (Coturnix coturnix japonica). Journal of Animal and Veterinary Advances, 9(3): 501-507. DOI: 10.3923/javaa.2010.501.507
Pathak P, Kumar Nayak V & Ganaie BA. 2018. Comparison of various immune responsiveness traits in divergent stocks of chicken: A review. Journal of Pharmacognosy and Phytochemistry, 7(2): 1045-1050
Pinheiro J, Bates D, DebRoy S & Sarkar D. 2014. R Core Team, nlme: linear and nonlinear mixed effects models. R package version 3.1-117. http://CRAN. R-project. org/package= nlme.
Raji A, Mbap S & Aliyu J. 2014. Comparison of different models to describe growth of the japanese quail (Coturnix japonica). Trakia Journal of Sciences, 2: 182-188.
Saurabh S & Sahoo PK. 2008. Lysozyme: an important defense molecule of fish innate immune system. Aquaculture Research, 39(3): 223-239. DOI: 10.1111/j.1365-2109.2007.01883.x
Sezer M & Tarhan S. 2005. Model parameters of growth curves of three meat-type lines of Japanese quail. Czech Journal of Animal Science, 50(1): 22-30. DOI: 10.17221/3991-CJAS
Sivaraman GK, Kumar S, Saxena VK, Singh NS & Shivakumar BM. 2005. Genetics of immunocompetent traits in a synthetic broiler dam line. British Poultry Science, 46(2): 169-174. DOI: 10.1080/00071660500064949
Teleken JT, Galvão AC & Robazza WDS. 2017. Comparing non-linear mathematical models to describe the growth of different animals. Acta Scientiarum Animal Science, 39: 73-81. DOI: 10.4025/actascianimsci.v39i1.31366
Vali N, Edriss M & Rahmani H. 2005. Genetic parameters of body and some carcass traits in two quail strains. International Journal of Poultry Science, 4: 296-300. DOI: 10.3923/ijps.2005.296.300
Wilkinson N, Dinev I, Aspden WJ, Hughes RJ, Christiansen I, Chapman J, Gangadoo S, Moore RJ & Stanley D. 2018. Ultrastructure of the gastrointestinal tract of healthy Japanese quail (Coturnix japonica) using light and scanning electron microscopy. Animal nutrition, 4(4): 378-387. DOI: 10.1016/j.aninu.2018.06.006
Zhao Z, Li S, Huang H, Li C, Wang Q & Xue L. 2015. Comparative study on growth and development a model of indigenous chicken breeds in China. Open Journal of Animal Science, 5: 219-223. DOI: 10.4236/ojas.2015.52024.