Adenaike A, Akpan U, Udoh JE, Wheto M, Durosaro SO, Sanda AJ & Ikeobi CON. 2017. Comparative evaluation of growth functions in three broiler strains of Nigerian chickens. Pertanika Journal of Tropical Agricultural Science, 40: 611-620.
Aggrey S. 2002. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81: 1782-1788. DOI: 10.1093/ps/81.12.1782
Alkan S, Mendes M, Karabag K & Balcioglu M. 2009. Effect of short-term divergent selection for 5-week body weight on growth characteristics of Japanese quail. Archive Fur Gefluegelkunde, 73: 124-131.
Bao M, Bovenhuis H, Nieuwland M, Parmentier H & Van der Poel J. 2015. Genetic parameters of IgM and IgG antibodies binding autoantigens in healthy chickens. Poultry Science, 95: 458-465. DOI: 10.3382/ps/pev347
Bindya LA, Murthy HNN, Jayashankar MR & Govindaiah AM. 2010. Mathematical models for egg production in an Indian colored broiler dam line. International Journal of Poultry Science, 9(9): 916-919. DOI: 10.3923/ijps.2010.916.919
Cooper RG. 2005. Growth in the ostrich (Struthiocamelus var. domesticus). Animal Science Journal, 76: 1-4. DOI: 10.1111/j.1740-0929.2005.00230.x
Darmani Kuhi H & France J. 2019. Modelling cumulative egg production in laying hens and parent stocks of broiler chickens using classical growth functions. British Poultry Science, 60(5): 564-569. DOI: 10.1080/00071668.2019.1622080
Darmani Kuhi H, Porter T, López S, Kebreab E, Strathe A, Dumas A, Dijkstra J & France J. 2010. A review of mathematical functions for the analysis of growth in poultry. World's Poultry Science Journal, 66(02): 227-240. DOI: 10.1017/S0043933910000280
Faraji-Arough H, Rokouei M, Maghsoudi A & Ghazaghi M. 2018. Comparative study of growth patterns in seven strains of Japanese quail using nonlinear regression modeling. Turkish Journal of Veterinary and Animal Science, 42(5): 441-451. DOI: 10.3906/vet-1801-13
Faraji-Arough H, Rokouei M, Maghsoudi A & Mehri M. 2019. Evaluation of non- linear growth curves models for native slow-growing Khazak chickens. Poultry Science Journal, 7(1): 25-32. DOI: 10.22069/psj.2019.15535.1355
Fitzhugh H. 1976. Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, 42(4): 1036-1051. DOI: 10.22069/10.2527/jas1976.4241036x
Garcia V, Catala-Gregori P, Hernandez F, Megias M & Madrid J. 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research, 16: 555-562. DOI: 10.3382/japr.2006-00116
Gavora JS & Spencer JL. 1979. Studies of genetic resistance of chickens to Marek’s disease - A review. Comparative Immunology, Microbiology and Infectious Diseases, 2: 359. DOI: 10.1016/0147-9571(79)90022-5
Goerlich VC, Nätt D, Elfwing M, Macdonald B & Jensen P. 2012. Transgene rational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Hormones and Behavior, 61(5): 711–718. DOI: 10.1016/j.yhbeh.2012.03.006
Goto T, Goto N, Shiraishi JI, Bungo T & Tsudzuki M. 2010. Comparison of growth curves of four breeds of Japanese native chicken, Onaga-dori, Tosa-jidori, Ukokkei and Hinai-dori. Journal of Animal Veterinary Advances, 9: 1362-1365. DOI: 10.3923/javaa.2010.1362.1365
Holloway J, Shoemaker CA & Ottinger CA. 1993. Serum lysozyme levels in paddlefish and walleye. Journal of Aquatic Animal Health, 5: 324–326. DOI: 10.1577/1548-8667(1993)005<0324:SLLIPA>2.3.CO;2
Huopalahti R, Anton M, López-Fandiño R & Schade R. 2007. Bioactive egg compounds. Springer-Verlag Berlin Heidelberg. pp. 33-42.
Jiang CM, Wang MC, Chang WH & Chang HM. 2001. Isolation of lysozyme from hen egg albumen by alcohol‐insoluble cross‐linked pea pod solid ion‐exchange chromatography. Journal of Food Science, 66 (8): 1089-1093. DOI: 10.1111/J.1365-2621.2001.TB16086.X
Jolles P & Jolles J. 1984. What’s new in lysozyme research? Always a model system, today as yesterday. Molecular and Cellular Biochemistry, 63: 165–189. DOI: 10.1007/BF00285225
Karkach A. 2006. Trajectories and models of individual growth. Demographic Research, 15: 347-400. DOI: 10.4054/DemRes.2006.15.12
Kumari J, Sahoo PK, Swain T, Sahoo SK, Sahu B & Mohanty BR. 2006. Seasonal variation in the innate immune parameters of the Asia catfish Clarias batrachus. Aquaculture, 252: 121-127. DOI: 10.1016/j.aquaculture.2005.07.025
Leshchinsky TV & Klasing KC. 2001. Divergence of the inflammatory response in two types of chickens. Developmental and Comparative Immunology, 25: 62-638. DOI: 10.1016/s0145-305x(01)00023-4
Manjula P, Park HB, Yoo J, Wickramasuriya S, Seo DW, Choi NR, Kim CD, Kang BS, Oh KS & Sohn SH. 2016. Comparative study on growth patterns of 25 commercial strains of Korean native chicken. Korean Journal of Poultry Science, 43: 1-14. DOI: 10.5536/KJPS.2016.43.1.1
Masoudi A & Azarfar A. 2017. Comparison of nonlinear models describing growth curves of broiler chickens fed on different levels of corn bran. International Journal of Avian and Wildlife Biology, 2: 1-7. DOI: 10.15406/ijawb.2017.02.00012
Minvielle F. 1998. Genetics and breeding of Japanese quail for production around the world. Proceedings of the 6th Asian Pacific Poultry Congress. Nagoya, Japan.
Moharrery A & Mirzaei M. 2014. Growth characteristics of commercial broiler and native chickens as predicted by different growth functions. Journal of Animal Feed Science, 23: 82-89. DOI: 10.22358/jafs/65720/2014
Nahashon S, Aggrey S, Adefope N & Amenyenu A. 2006. Modeling growth characteristics of meat-type guinea fowl. Poultry Science, 85(5): 943-946. DOI: 10.1093/ps/85.5.943
Narinc D, Aksoy T & Karaman E. 2010. Genetic parameters of growth curve parameters and weekly body weights in Japanese quail (Coturnix coturnix japonica). Journal of Animal and Veterinary Advances, 9(3): 501-507. DOI: 10.3923/javaa.2010.501.507
Pathak P, Kumar Nayak V & Ganaie BA. 2018. Comparison of various immune responsiveness traits in divergent stocks of chicken: A review. Journal of Pharmacognosy and Phytochemistry, 7(2): 1045-1050
Pinheiro J, Bates D, DebRoy S & Sarkar D. 2014. R Core Team, nlme: linear and nonlinear mixed effects models. R package version 3.1-117. http://CRAN. R-project. org/package= nlme.
Raji A, Mbap S & Aliyu J. 2014. Comparison of different models to describe growth of the japanese quail (Coturnix japonica). Trakia Journal of Sciences, 2: 182-188.
Saurabh S & Sahoo PK. 2008. Lysozyme: an important defense molecule of fish innate immune system. Aquaculture Research, 39(3): 223-239. DOI: 10.1111/j.1365-2109.2007.01883.x
Sezer M & Tarhan S. 2005. Model parameters of growth curves of three meat-type lines of Japanese quail. Czech Journal of Animal Science, 50(1): 22-30. DOI: 10.17221/3991-CJAS
Sivaraman GK, Kumar S, Saxena VK, Singh NS & Shivakumar BM. 2005. Genetics of immunocompetent traits in a synthetic broiler dam line. British Poultry Science, 46(2): 169-174. DOI: 10.1080/00071660500064949
Teleken JT, Galvão AC & Robazza WDS. 2017. Comparing non-linear mathematical models to describe the growth of different animals. Acta Scientiarum Animal Science, 39: 73-81. DOI: 10.4025/actascianimsci.v39i1.31366
Vali N, Edriss M & Rahmani H. 2005. Genetic parameters of body and some carcass traits in two quail strains. International Journal of Poultry Science, 4: 296-300. DOI: 10.3923/ijps.2005.296.300
Wilkinson N, Dinev I, Aspden WJ, Hughes RJ, Christiansen I, Chapman J, Gangadoo S, Moore RJ & Stanley D. 2018. Ultrastructure of the gastrointestinal tract of healthy Japanese quail (Coturnix japonica) using light and scanning electron microscopy. Animal nutrition, 4(4): 378-387. DOI: 10.1016/j.aninu.2018.06.006
Zhao Z, Li S, Huang H, Li C, Wang Q & Xue L. 2015. Comparative study on growth and development a model of indigenous chicken breeds in China. Open Journal of Animal Science, 5: 219-223. DOI: 10.4236/ojas.2015.52024.