Chronic Heat Stress Effect on Metabolic Parameters of Poultry: A Meta-Analysis

Document Type : Original Paper

Authors

Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

Abstract

Many scientific researchers reported the significant effect of heat stress (HS) on commercial poultry production. Bird metabolism and blood parameters change during acute and chronic heat stress status. This article reviewed and analyzed the broiler blood parameters under normal thermal and cyclic-chronic heat stress conditions. All the reviewed reports were achieved from Elsevier, PubMed, Web of Science, and Google Scholar those were in English up to January 27, 2022. Outcomes of blood cholesterol (Chol), triglyceride (Tri), glucose (Glu), corticosterone (Cortico), uric acid (UA), sodium (Na+), Potassium (K+), and triiodothyronine (T3) were calculated by standardized mean difference (SMD) with 95% confidence interval (CI). Articles with common metabolite differentiated between 4 or 7 studies with 94-662 chicks in each of them. Chronic HS had no significant effect on blood concentrations of Cortico (5 studies: SMD=1.8153 95% CI=-2.9524; 6.5830), Tri ( studies=7 SMD=0.4559 95% CI=-0.2923; 1.2040), Uric (studies=5 SMD= 0.9590 95% CI= -0.3338; 2.2518), T3 (studies=4 SMD= -9.006 95% CI= -46.1608; 28.1487), K+ (studies=4 SMD= -6.675 95% CI= -20.1400; 6.7898) , but significantly increased Glu (studies=8 SMD= 0.3064 95% CI= 0.0027; 0.6100), Chol (studies=6 SMD= 0.7655 95% CI= 0.2653; 1.2658) and decreased Na+ (studies=4 SMD= -1.723 95% CI= -3.1536; -0.2925) levels. Statistically significant effects of chronic heat stress reflexed as a decrease in serum sodium, increase in cholesterol, and glucose level. But there was no significant difference between triglyceride, corticosterone, uric acid, potassium, and triiodothyronine in the heat stress and normal temperature group. Based on our meta-analysis, high blood glucose, high Cholesterol, and losing electrolyte balance are major problems in chickens during cyclic-chronic heat stress acclimatizing programs.

Keywords


Al Wakeel RA, Shukry M, Abdel Azeez A, Mahmoud S & Saad MF. 2017. Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens. Stress, 20: 562-572. DOI: 10.1080/10253890.2017. 1377177
Alhenaky A, Abdelqader A, Abuajamieh M & Al-Fataftah AR. 2017. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 70: 9-14. DOI: 10.1016/j.jtherbio.2017.10.015
Azad M, Kikusato M, Maekawa T, Shirakawa H & Toyomizu M. 2010. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155: 401-406. DOI: 10.1016/j.cbpa.2009.12.011
Bahry MA, Chowdhury VS, Yang H, Tran PV, Do PH, Han G & Furuse M. 2017. Central administration of neuropeptide Y differentially regulates monoamines and corticosterone in heat-exposed fed and fasted chicks. Neuropeptides, 62: 93-100. DOI: 10.1016/j.npep.2016.11.008
Barrett NW, Rowland K, Schmidt CJ, Lamont SJ, Rothschild MF, Ashwell CM & Persia ME. 2019. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poultry Science, 98: 6684-6692. DOI: 10.3382/ps/pez541
Beckford RC, Ellestad LE, Proszkowiec-Weglarz M, Farley L, Brady K, Angel R & Porter TE. 2020. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poultry Science, 99: 6317-6325. DOI: 10.1016/j.psj.2020.09.052
Chowdhury VS, Han G, Bahry MA, Tran PV, Do PH, Yang H & Furuse M. 2017. L-Citrulline acts as potential hypothermic agent to afford thermotolerance in chicks. Journal of Thermal Biology, 69: 163-170. DOI: 10.1016/j.jtherbio.2017.07.007
Chowdhury VS, Tomonaga S, Nishimura S, Tabata S, Cockrem JF, Tsutsui K & Furuse M. 2012. Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162: 227-233. DOI: 10.1016/j.cbpa.2012.03.009
Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP & Thomas J. 2019. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev, 10: ED000142. DOI: 10.1002/14651858.ED000142
El-Naggar K, El-Kassas S, Abdo SE & Kirrella AA. 2019. Role of gamma-aminobutyric acid in regulating feed intake in commercial broilers reared under normal and heat stress conditions. Journal of Thermal Biology, 84: 164-175. DOI: 10.1016/j.jtherbio.2019.07.004
Erfani M, Eila N, Zarei A & Noshary A. 2021. The effects of vitamin C and methionine hydroxy analog supplementation on performance, blood parameters, liver enzymes, thyroid hormones, antioxidant activity of blood plasma, intestine morphology, and HSP70 gene expression of broilers under heat stress. Tropical Animal Health and Production, 53: 1-11. DOI: 10.1007/s11250-021-02738-8
Garriga C, Hunter RR, Amat C, Planas JM, Mitchell MA & Moretó M. 2006. Heat stress increases apical glucose transport in the chicken jejunum. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290: R195-R201. DOI: 10.1152/ajpregu.00393.2005
Hamidi O, Chamani M, Ghahri H, Sadeghi AA, Malekinejad H & Palangi V. 2021. Effects of supplemental chromium nanoparticles on IFN-γ expression of heat stress broilers. Biological trace Element Research, 1-9. DOI: 10.1007/s12011-021-02634-0
Higgins JP, Thompson SG, Deeks JJ & Altman DG. 2003. Measuring inconsistency in meta-analyses. BMJ, 327: 557-560. DOI: 10.1136/bmj.327.7414.557
Ito K, Bahry MA, Hui Y, Furuse M & Chowdhury VS. 2015. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187: 13-19. DOI: 10.1016/j.cbpa. 2015.04.010
Jastrebski SF, Lamont SJ & Schmidt CJ. 2017. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PLoS One 12, e0181900.
Lin H, Decuypere E & Buyse J. 2006. Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 144: 11-17. DOI: 10.1016/j.cbpa.2006.01.032
Liu L, Ren M, Ren K, Jin Y & Yan M. 2020. Heat stress impacts on broiler performance: a systematic review and meta-analysis. Poultry Science, 99: 6205-6211. DOI: 10.1016/j.psj.2020.08.019
Mohammadabadi M, Nikbakhti M, Mirzaee H, Shandi A, Saghi D, Romanov MN & Moiseyeva IG. 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian Journal of Genetics, 46: 505-509. DOI: 10.1134/S1022795410040198
Mohammadi Far A, Faqih Imani SA, Mohammad Abadi MR & Soflaei M. 2014. The effect of TGFβ 3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agricultural Biotechnology Journal, 5: 125-136.
Mohammadifar A & Mohammadabadi M. 2017. The effect of uncoupling protein polymorphisms on growth, breeding value of growth and reproductive traits in the fars indigenous chicken. Iranian Journal of Applied Animal Science, 7: 679-685.
Moraes V, Malheiros R, Bruggeman V, Collin A, Tona K, Van As P & Macari M. 2004. The effect of timing of thermal conditioning during incubation on embryo physiological parameters and its relationship to thermotolerance in adult broiler chickens. Journal of Thermal Biology, 29: 55-61. DOI: 10.1016/j.jtherbio.2003.10.006
Nakagawa H, Matsumura T, Suzuki K, Ninomiya C & Ishiwata T. 2016. Changes of brain monoamine levels and physiological indexes during heat acclimation in rats. Journal of Thermal Biology, 58: 15-22. DOI: 10.1016/j.jtherbio.2016.03.010
Nakagawa H, Matsunaga D & Ishiwata T. 2020. Effect of heat acclimation on anxiety-like behavior of rats in an open field. Journal of Thermal Biology, 87: 102458. DOI: 10.1016/j.jtherbio.2019.102458
Piestun Y, Shinder D, Ruzal M, Halevy O & Yahav S. 2008. The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation. Journal of Thermal Biology, 33: 413-418. DOI: 10.1016/j.jtherbio.2008.06.007
Quinteiro-Filho W, Gomes A, Pinheiro M, Ribeiro A, Ferraz-de-Paula V, Astolfi-Ferreira C & Palermo-Neto J. 2012. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathology, 41: 421-427. DOI: 10.1080/03079457.2012.709315
Roushdy EM, Zaglool AW & El-Tarabany MS. 2018. Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. Journal of Thermal Biology, 74: 337-343. DOI: 10.1016/j.jtherbio.2018.04.009
Sahin K, Sahin N & Kucuk O. 2003. Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32 C). Nutrition Research, 23: 225-238. DOI: 10.1016/S0271-5317(02)00513-4
Sahin K, Sahin N, Kucuk O, Hayirli A & Prasad A. 2009. Role of dietary zinc in heat-stressed poultry: A review. Poultry Science, 88: 2176-2183. DOI: 10.3382/ps.2008-00560
Song Z, Liu L, Sheikhahmadi A, Jiao H & Lin H. 2012a. Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens. Journal of Biomedicine and Biotechnology, 2012. DOI: 10.1155/2012/484869
Song Z, Liu L, Sheikhahmadi A, Jiao H & Lin H. 2012b. Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens. Journal of Biomedicine and Biotechnology, 2012: 484869. DOI: 10.1155/2012/484869
Sugiharto S, Yudiarti T, Isroli I, Widiastuti E & Putra FD. 2017. Effect of dietary supplementation with Rhizopus oryzae or Chrysonilia crassa on growth performance, blood profile, intestinal microbial population, and carcass traits in broilers exposed to heat stress. Archives Animal Breeding, 60: 347-356. DOI: 10.5194/aab-60-347-2017
Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H & Song Z. 2015. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). International Journal of Biometeorology, 59: 127-135. DOI: 10.1007/s00484-014-0829-1
Team RC. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Wan X, Jiang L, Zhong H, Lu Y, Zhang L & Wang T. 2017. Effects of enzymatically treated Artemisia annua L. on growth performance and some blood parameters of broilers exposed to heat stress. Animal Science Journal, 88: 1239-1246. DOI: 10.1111/asj.12766
Wang Y, Saelao P, Chanthavixay K, Gallardo R, Bunn D, Lamont SJ & Zhou H. 2018. Physiological responses to heat stress in two genetically distinct chicken inbred lines. Poultry Science, 97: 770-780. DOI: 10.3382/ps/pex363
Yin C, Tang S, Liu L, Cao A, Xie J & Zhang H. 2021. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals, 11: 630. DOI: 10.3390/ani11030630