A Meta-Analysis of Genetic Parameter Estimates for Economically Important Traits in Iranian Indigenous Chickens

Document Type : Original Paper


Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran


This study aimed to perform a meta-analysis to combine genetic parameters for economically important traits of Iranian indigenous chickens. A data set of information related to different growth, reproduction, and egg quality traits including 336 heritability estimates and 433 genetic correlations from 45 articles published between 2007 and 2019 were used. Meta-analysis was performed based on a random-effects model to calculate the effect size for genetic parameters. Also, statistic and Q test were used to measure the degree of heterogeneity among studies. The mean heritability for growth traits ranged from 0.222 (body weight at hatch) to 0.34 (body weight at 12 weeks of age). The lowest and highest estimates of the heritability for reproductive traits were 0.181 (number of eggs produced) and 0.449 (age at sexual maturity), respectively. The mean heritability estimate for egg internal quality traits varied from 0.211 (yolk weight) to 0.355 (albumin weight) and for external quality traits of eggs in the range from 0.261 (shell strength) up to 0.332 (Shell weight). Also, the mean genetic correlation estimates between growth traits, and between reproductive traits ranged from 0.297 to 0.878 and -0.678 to 0.788, respectively. Also, the genetic correlation between internal and external quality traits of eggs ranged from -0.069 to -0.979 and -0.012 to -0.856, respectively. The estimates reported in the present study are appropriate to be used in breeding programs when reliable genetic parameter estimates are not accessible for economically important traits in native fowls.


Akanno E, Schenkel F, Quinton V, Friendship R & Robinson J. 2013. Meta-analysis of genetic parameter estimates for reproduction, growth and carcass traits of pigs in the tropics. Livestock Science, 152(2-3): 101-113. DOI: 10.1016/j.livsci.2012.07.021
Borenstein M, Hedges LV, Higgins JP & Rothstei HR. 2009. Random effects model in introduction to meta-analysis. Chichester, UK: John Wiley.
Borenstein M, Hedges LV, Higgins JP & Rothstei HR. 2011. Introduction to meta-analysis. John Wiley and Sons.
Diaz I, Crews D & Enns R. 2014. Cluster and meta-analyses of genetic parameters for feed intake traits in growing beef cattle. Journal of Animal Breeding and Genetics, 131(3): 217-226. DOI: 10.1111/jbg.12063
Dobson AJ. 1991. An introduction to generalized linear models. Chapman and Hall. London, UK.
Duval S & Tweedie R. 2000. A nonparametric “Trim and Fill” method of accounting for publication bias in meta-analysis. Journal of Americal Statistical Association, 95(449): 89-98. DOI: 10.1080/01621459.2000.10473905
Ghavi Hossein-Zadeh N. 2021. A meta-analysis of heritability estimates for milk fatty acids and their genetic relationship with milk production traits in dairy cows using a random-effects model. Livestock Science, 244(11): 104388. DOI: 10.1016/j.livsci.2020.104388
Hardy RJ & Thompson  SG.  1998.  Detecting  and describing heterogeneity in meta-analysis. Statistics in Medicine, 17(8): 841-856. DOI: 10.1002/(sici)1097-258(19980430)17:8<841::aid-sim781>3.0.co;2-d
Higgins J & Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11): 1539-1558. DOI: 10.1002/sim.1186
Higgins JP, Thompson SG, Deeks JJ & Altman DG. 2003. Measuring inconsistency in meta-analyses. British Medicine Journal, 327(7414): 557-560. DOI: 10.1136/bmj.327.7414.557
Hooijmans CR, Inthout J, Ritskes Hoitinga M & Rovers M. 2014. Meta-Analyses of animal studies: an introduction of a valuable instrument to further improve healthcare. ILAR Journal, 55(3): 418-426. DOI: 10.1093/ilar/ilu042
Huedo Medina TB, Sanchez-Meca J, Marin Martinez F & Botella J. 2006. Assessing heterogeneity in meta-analysis: Q statistic or I2 index. Psychology Methods, 11(2): 193-206. DOI: 10.1037/1082-989X.11.2.193
Jasouri M, Zamani P & Alijani S. 2017. Dominance genetic and maternal effects for genetic evaluation of egg production traits in dual purpose chickens. British Poultry Science, 58(5): 498-505. DOI: 10.1080/00071668.2017.1336748
King’ori AM. 2011. Review of the factors that influence egg fertility and hatchability in poultry. International Journal of Poultry Science, 10(6): 483-492. DOI: 10.3923/ijps.2011.483.492
Lau J, Antman EM, Jimenez Silva J, Kupelnick B, Mosteller F & Chalmers TC. 1992. Cumulative meta-analysis of therapeutic trials for myocardial infraction. New England Journal of Medicine, 327(4): 248-254. DOI: 10.1056/NEJM199207233270406
Lean IJ, Rabiee A, Duffield TF & Dohoo IR. 2009. Invited Review: Use of meta-analysis in animal health and reproduction: Methods and applications. Journal of Dairy Science, 92(8): 3545-3565. DOI: 10.3168/jds.2009-2140
Littell JH, Corcoran J & Pillai V. 2008. Systematic reviews and meta-Analysis. Oxford University Press.
Matika O, Van Wyk JB, Erasmus GJ & Baker RL. 2003. Genetic parameter estimates in Sabi sheep. Livestock Production Science, 79: 17-28. DOI: 10.1016/S0301-6226(02)00129-X
Mohammadabadi MR, Nikbakhti M, Mirzaee HR, Shandi MA, Saghi DA, Romanov MN & Moiseyeva IG. 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian Journal of Genetics, 46: 572-576. DOI: 10.1134/S1022795410040198
Mohammadifar A & Mohammadabadi MR. 2017. The effect of uncoupling protein polymorphisms on growth, breeding value of growth and reproductive traits in the Fars indigenous chicken. Iranian Journal of Applied Animal Science, 7(4): 679-685.
Mohammadifar A, Faghih Imani SA, Mohammadabadi MR & Soflaei M. 2013. The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agricultural Biotechnology Journal, 5: 125-136. DOI: 10.22103/JAB.2014.1226
Niknafs S, Nejati Javarmi A, Mehrabani Yeganeh H & Fatemi SA. 2012. Estimation of genetic parameters for body weight and egg production traits in Mazandaran native chicken. Tropical Animal Health and Production, 44: 1437-1443. DOI: 10.1007/s11250-012-0084-6
Safari E, Fogarty N & Gilmour AR. 2005. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livestock Production Science, 92(3): 271-289. DOI: 10.1016/j.livprodsci.2004.09.003
Sena ES, Briscoe CL,  Howells   DW,   Donnan   GA,
     Sandercock  PA  &  Macleode  MR.  2010.  Factors affecting the apparent efficacy and safety of tissue plasminogen activator in thrombotic occlusion models of stroke: Systematic review and meta-analysis. Journal of Cereberal Blood Flow and Metabolism, 30(12): 1905-1913. DOI: 10.1038/jcbfm.2010.116
Sutton AJ, Abrams KR, Jones DR, Sheldon TA & Song F. 2000. Methods for meta-analysis in medical research. John Wiley.
Turner RM, Bird SM & Higgins JPT. 2013. The impact of study size on meta-analyses: Examiation of underpowered studies in cochrane reviews. PLOS One, 8(3): e59202. DOI: 10.1371/journal.pone.0059202
Valentine JC, Pigott TD & Rothstein HR. 2010. How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics, 35(2): 215-247. DOI: 10.3102/1076998609346961