The Interaction of Dopaminergic System and GABAB Receptor in Food Intake Regulation of Neonatal Chicken

Document Type : Original Paper


1 Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran


Animal studies have shown the role of gamma amino butyric acid (GABAergic) and Dopaminergic systems in controlling appetite, but their interactions in birds have not yet been investigated . In this study, 6 experiments were carried out to investigate the interactions between GABArergic and dopaminergic systems in fresh laying hens (Each experiment included 4 groups, 11 chicks per group). Chicks received intracerebroventricular (ICV) injections after 3h of starvation in the following form: In 6 experiments; Each experiment has 4 groups. Group 1 (CON): Received Saline as a control group. Group 2 (DOP): Dopamine neurotransmitters include 125 nmol L-DOPA (levo-dihydroxyphenylalanine) as a dopamine precursor. 6-OHDA, 2.5 nmol as a dopaminergic neurotoxin. SCH23390, 5nmol. AMI-193, 5nmol. NGB2904, 6.4nmol and L-741742, 6nmol. (L-DOPA, 6-OHDA, D1 receptor, D2 receptor, D3 receptor and D4 receptor antagonists), respectively (each of them in one of the experiments). Group 3 (GABA): Baclofen, 0.2μm (GABAB agonist). Group 4 (DOP+GABA): Receive Baclofen simultaneously with any of the L-DOPA, 6-OHDA, D1, D2, D3 and D4 antagonists, respectively (each of them in one experiments). Cumulative consumption of food (based on the percentage of body weight) was measured up to 120 minutes after the injection. According to the results, ICV injection of Baclofen alone significantly increased feed intake (P < 0.05). None of the dopamine receptors (L-DOPA, 6-OHDA, D1, D2, D3, D4, as well as dopamine synthesis inhibitors) did not affect food intake (P > 0.05). The co-injection of the L-DOPA, 6-OHDA, D1-D4 receptor antagonists + baclofen (P> 0.05) showed no significant effect. The results of this study showed that dopaminergic and GABAB receptors had no interaction in FD3 neonatal layer-type chicken.


Agmo A, Belzung C & Giordano M. 1996. Interactions between dopamine and GABA in the control of ambulatory activity. Journal of Neural Transmission, 193: 025-034. DOI: 10.1007/BF01291783
Alizadeh A, Zendehdel M, Babapour V, Charkhkar S & Hassanpour S. 2015. Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Veterinary Research Communications, 39: 151–157. DOI: 10.1007/s11259-015-9636-3
Anderberg RH, Anefors C, Bergquist F, Nissbrandt H & Skibicka KP. 2014. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiology & Behavior, 136: 135-144. DOI: 10.1016/j.physbeh.2014.02.026
Baik JH. 2021. Dopaminergic control of the feeding circuit. Endocrinology and Metabolism, 36: 229-239. DOI: 10.3803/EnM.2021.979
Beaulieu JM & Gainetdinov R. 2011. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1): 182-217. DOI: 10.1124/pr.110.002642
Berridge CW, Stratford TL, Foote SL & Kelley AE. 2006. Distribution of dopamine β‐hydroxylase‐like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse, 26(3): 239-241. DOI: 10.1002(SICI)1098-2396(199711)27:3<230::AID -SYN8>3.0.CO;2-E
Berthoud HR. 2006. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Nutrition & Metabolism, 14(5): 106S-299S. DOI: 10.1038/oby.2006.308
Blevins JE, Stanley BG & Reidelberger RD. 2002. DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Biochemistry and Behavior, 71: 277-282. DOI: 10.1016/s0091-3057(01)00659-1
Bungo T, Izumi T, Kawamura K, Takagi T, Ueda H & Furuse M. 2003. Intracerebroventricular injection of muscimol, baclofen or nipecotic acid stimulates food intake in layer-type, but not meat-type, chicks. Brain Research, 993 (1-2): 235-238. DOI: 10.1016/j.brainres.2003.09.017
Bungo T, Yanagita K & Shiraishi J. 2010. Feed intake after infusion of noradrenalin, dopamine or its precursor into the lateral ventricles in neonatal chicks. Journal of Animal and Veterinary Advances, 9(4): 660-663. DOI: 10.3923/javaa.2010.760.763
Carew LB, Evarts KG & Alster FA. 2004. Growth, feed intake, and plasma thyroid hormone levels in chicks fed dietary excesses of essential amino acids. Poultry Science, 6: 204 205. DOI: 10.1093/ps/77.2.295
Chen Z, Xie J, Hu MY, Tang J, Shao ZF & Li MH. 2015. Protective effects of γ -aminobutyric acid (GABA) on the small intestinal mucosa in heat-stressed wenchang chicken. Journal of Animal & Plant Sciences, 25(1): 78-87.
Davis JL, Masuoka DT, Gerbrandt LK & Cherkin A. 1979. Autoradiographic distribution of Lproline in chicks after intracerebral injection. Physiology & Behavior, 22:693-695. DOI: 10.1016/0031-9384(79)90233-6
Denbow DM. 1985. Food intake control in birds. Neuroscience & Biobehavioral Reviews, 9(2): 223-32. DOI: 10.1016/0149-7634(85)90047-8
Denbow DM. 1991. Induction of food intake by a GABAergic mechanism in the turkey. Physiology & behavior, 49(3): 485-488. DOI: 10.1016/0031-9384(91)90268-s
Denbow DM. 1994. Peripheral regulation of food intake in poultry. conference: food intake regulation: neuropeptides, circulating factors and genetics. The Journal of nutrition, 124 (8): 1349s-1354s. DOI: 10.1093/jn/124.suppl_8.1349S
Denbow DM, Van Krey HP, Lacy MP & Dietrick TJ. 1983. Feeding, drinking and temperature of leghorn chicks: effects of ICV injections of biogenic amine. Physiology & Behavior, 31: 85-90. DOI: 10.1016/0031-9384(83)90100-2
Duke GE. 1986. Alimentary canal: anatomy, regulation of feeding, and motility. In: Avian physiology. Sturkie PD. Academic Press. Pages, 130-166. DOI: 10.1016/S1055-937X(99)80036-X
Emadi L, Jonaidi H, Nazifi S, Khasti H, Rohani E & Kaiya H. 2021. The effects of central ghrelin on serum parameters related to energy metabolism in neonatal chicks. Iranian Journal of Veterinary Medicine, 16(2): 110-118. DOI: 10.22059/ijvm.2021.325585.1005182
Erhardt S, Mathé JM, Chergui K, Engberg G & Svensson TH. 2002. GABAB receptor-mediated modulation of the firing pattern of ventral tegmental area dopamine neurons in vivo. Archives of Pharmacology, 365:173–180. DOI: 10.2174/157015906775203020
Fernández-Ruiz J, Hernández M & Ramos JA. 2010. Cannabinoid–dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neuroscience & Therapeutics, 16(3): e72-e91.  DOI: 10.1111/j.1755-5949.2010.00144.x
Furuse M, Matsumoto M, Saito N, Sugahara K & Hasegawa S. 1997. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. European Journal of Pharmacology, 339: 211-214. DOI: 10.1111/asj.12619
Hashemzadeh M, Zendehdel M, Babapour V & Panahi N. 2018. Interaction between central GABAA receptor and Dopaminergic system on food intake in neonatal chicks: role of D1 and GABAA receptors. International Journal of Neuroscience, 128(4):361-368. DOI: 10.1080/00207454.2017.1383908
Jonaidi H, Abbassi L, Yaghoobi MM, Denbow DM, Kamali Y & Shojaei B. 2012. The role of GABAergic system on the inhibitory effect of ghrelin on food intake in neonatal chicks. Neuroscience Letters, 520:82-86. DOI: 10.1016 /j.neulet.2012.05.036
Jonaidi H, Babapour V & Denbow DM. 2002. GABAergic control of food intake in the meat type chickens. Physiology & Behavior, 76: 465-468. DOI: 10.1016/S0031-9384(02)00692-3
Jonaidi H & Noori Z. 2012. Neuropeptide Y-induced feeding is dependent on GABAA receptors in neonatal chicks. Journal of Comparative Physiology A, 198:827–832. DOI: 10.1007/s00359-012-0753-y
Lacey MG, Mercuri NB & North RA. 1988. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. The Journal of Physiology, 401(1): 437-453. DOI: 10.1113/jphysiol.1988.sp017171
Lopes EF, Roberts BM, Siddorn RE, Clements MA & Cragg SJ. 2019. Inhibition of nigrostriatal dopamine release by striatal GABAA and GABAB receptors. The Journal of Neuroscience, 39(6):1058–1065. DOI: 10.1523/JNEUROSCI.2028-18
Møller A, Thomsen KT, Brooks1 DJ, Mouridsen K, Blicher JU, Hansen KV & Lou HC. 2019. Attenuation of dopamine‐induced GABA release in problem Gamblers. Brain and Behavior. 1-7. DOI: 10.1002/brb3.1239
Motaghi M, Jonaidi H, Bashiri B & Noori Gooshki S. 2021. Purinergic regulation of food and fat intakes in broiler’s central nervous system. Iranian Journal of Veterinary Medicine, 15(4): 404-410. DOI: 10.22059/ijvm.2021.309901.1005127
Nimitvilai S, Arora SD, McElvain AM & Brodie SM. 2012. Reversal of inhibition of putative dopaminergic neurons of the ventral tegmental area: Interaction of GABAB and D2 receptors. Neuroscience, 226: 29–39. DOI: 10.1016/j.neuroscience.2012.08.045
Qi W, Ding D & Salvi RJ. 2008. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hearing Research, 236: 52-60. DOI: 10.1016/j.heares.2007.12.002
Rahmani B, Ghashghayi E, Zendehdel, M, khodadi M & Hamidi B. 2021. The crosstalk between brain mediators regulating food intake behavior in birds: A Review. International Journal of Peptide Research and Therapeutics, 27: 2349–2370. DOI: 10.1007/s10989-021-10257-1
Richard JM, Plawecki AM & Berridge KC. 2013. Nucleus accumbens GABAergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine. European Journal of Neuroscience, 37(11):1789-802. DOI: 10.1111/ejn.12194
Richards MP, Rosebrough RW, Coon CN & McMurtry JP. 2010. Feed intake regulation for the female broiler breeder: In theory and in practice. Journal of Applied Poultry Research, 19: 182–193. DOI: 10.3382/japr.2010-00167
Saito ES, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M. 2005. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regulatory Peptides, 125: 201-208. DOI: 10.1016/j.regpep.2004.09.003
Scheel-Krüger J, Arnt J, Magelund G, Olianas M, Przewlocka B & Christensen AV. 1980. Behavioural functions of GABA in basal ganglia and limbic system. Brain Research Bulletin, 5(2): 261-267. DOI: 10.1016/0361-9230(80)90043-X
Shahri Sh. 2020. The effects of dopamine and glutamate agonists on brain histology and food intake of quails exposed to environmental heat stress. Journal of Infertility and Reproductive Biology, 8(3):57-60. DOI: 10.47277/JIRB/8(3)/57
Shojaei M, Yousefi A, Zendehdel M & Khodadadi M. 2020. Food intake regulation in birds: the role of neurotransmitters and hormones. Iranian Journal of Veterinary Medicine, 14(1): 100-115. DOI: 10.22059/IJVM.2019.285059.1005006
Sivilotti L & Nistri A. 1991. GABA receptor mechanisms in the central nervous system. Progress in Neurobiology, 36(1): 35–92. DOI: 10.1016/0301-0082(91)90036-z
Tajalli S, Jonaidi H, Abbasnejad M & Denbow DM. 2006. Interaction between nociceptin/orphanin FQ (N/OFQ) and GABA in response to feeding. Physiology & Behavior, 89: 410-413. DOI: 10.1016/j.physbeh.2006.07.009
Terry P, Gilbert DB & Cooper SJ. 1995. Dopamine receptor subtype agonists and feeding behavior. Obesity Research, 3(l4): SlSS-S23S. DOI: 10.1002/j.1550-8528.1995.tb00221.x
Van Tienhoven A & Juhasz LP. 1962. The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. Journal of Comparative Neurology, 118: 185-197. DOI: 10.1002/cne.901180205
Wang S, Khondowe P, Chen S,Yu J, Shu G, Zhu X, Wang L, Gao P, Xi Q, Zhang L & Jiang Q. 2012. Effects of “Bioactive” amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks. Journal of Animal Science and Biotechnology, 3: 27. DOI: 10.1186/2049-1891-3-27
Zendehdel M, Baghbanzadeh A, Babapour V & Cheraghi J. 2009. The effects of bicuculline and muscimol on glutamate-induced feeding behavior in broiler cockerels. Journal of Comparative Physiology A, 195: 715-720. DOI: 10.1007/s00359-009-0446-3
Zendehdel M, Ebrahimi YS, Hassanpour S & Koohi K. 2019. Interaction of the dopaminergic and Nociceptin/Orphanin FQ on central feed intake regulation in chicken. British Poultry Science, 60(6): 317-322. DOI: 10.1080/00071668.2019.1596225
Zendehdel M, Ghashghayi E, Hassanpour Sh, Baghbanzadeh A & Jonaidi H. 2016. Interaction between opioidergic and dopaminergic systems on food intake in neonatal layer type chicken. International Journal of Peptide Research and Therapeutics, 22: 83–92. DOI: 10.1007/s10989-015-9486-4
Zendehdel M, Hasani K, Babapour V, Mortezaei S, Khoshbakht Y & Hassanpour Sh. 2014. Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Veterinary Research Communications, 38: 11–19. DOI: 10.1007/s11259-013-9581-y
Zendehdel M, Hassanpour Sh. 2014. Central regulation of food intake in mammals and birds: a review. Eurotransmitter, 1: e251. DOI: 10.14800/nt.251
Zendehdel M, Tirgari F, Shohre B, Deldar H & Hassanpour S. 2017. Involvement of GABA and cannabinoid receptors in central food intake regulation in neonatal layer chicks: Role of CB1 and GABAA receptors. British Journal of Poultry Science, 19(2): 51-60. DOI: 10.1590/1806-9061-2016-0438