The Antibiogram Profile of Commensal Escherichia coli of the Gastrointestinal Tract of Apparently Healthy Ostriches and Diseased Chickens with Colibacillosis

Document Type : Original Paper


1 Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran

2 Doctor of Veterinary Medicine, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran


The present study aimed to assess the antibiotic resistance of commensal Escherichia coli (E. coli) of the healthy ostriches (Eho) and the diseased chickens with colibacillosis (Epc) and to determine if the odds that Eho (test group) shows antimicrobial resistance different from the Epc (reference group). In this descriptive cross-sectional study, we calculated the odd ratio (OR) after determination of the resistance and multidrug resistance (MDR) rates, MDR pattern, and the antibiotype of Eho (n= 49) and Epc (n= 39) against ampicillin, amoxicillin, gentamicin, amikacin, oxytetracycline, sultrim, lincospectin, and chloramphenicol. All of the Eho (100%) were resistant to ampicillin, gentamicin, and amoxicillin (P < 0.05) and 100% of Epc were resistant to ampicillin (P < 0.05). Thirty point two percent of Eho and 87.2% of Epc isolates were MDR. MDR Eho (P < 0.05) and MDR Epc (P < 0.05) showed two (P1 and P3) and four (P1-4) MDR patterns, respectively. Eho and Epc showed seven (P < 0.05) and 21 (P > 0.05) antibiotypes, respectively. The odds of Eho being resistant to ampicillin, amoxicillin, and gentamicin (P > 0.05) and P1 MDR pattern (P < 0.05) and three (P > 0.05) and one (P < 0.05) antibiotypes were higher in Eho compared to those in Epc. Our findings emphasized the development of antibiotic resistance in commensal E. coli and indicated that not only one antibiotic may not treat the disease in chickens, but antibiotic susceptibility testing is also of great necessity for veterinary health. The possible contamination of meat, carcasses, and eggs of apparently healthy ostriches by their fecal MDR E. coli threatens human health.


Amani F, Hashemitabar G, Ghaniei A & Farzin H. 2020. Antimicrobial resistance and virulence genes in the Escherichia coli isolates obtained from ostrich. Tropical Animal Health and Production, 52: 3501–3508. DOI: 10.1007/ s11250-020-02384-6
Boireau C, Morignat E, Cazeau G, Jarrige N, Jouy E, Haenni M, Madec JY, Leblond A & Gay E. 2018. Antimicrobial resistance trends in Escherichia coli isolated from diseased food-producing animals in France: A 14-year period time-series study. Zoonoses and Public Health, 65: e86-e94. DOI: 10.1111/zph.12412
Carrique-Mas JJ, Papadopoulou C, Evans SJ, Wales A, Teale CJ & Davies RH. 2008. Trends in phage types and antimicrobial resistance of Salmonella enterica serovar Enteritidis isolated from animals in Great Britain from 1990 to 2005. Veterinary  Record,162: 541-546. DOI: 10.1136/vr.162. 17.541
CLSI (Clinical and Laboratory Standards Institute). 2018. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, CLSI Supplement VET08. 4th Ed. Clinical and Laboratory Standards Institute. Wayne. 9 Pages.
Faghihi SM, Rasooli A & Vasfi Marandi M. 2017. A survey on antibacterial drug use in broiler chicken farms in Qum province, Iran. Journal of Veterinary Research, 72: 1–6. DOI: 10.22059/ jvr.2017.612
Græsbøll K, Nielsen S, Toft N & Christiansen LE. 2014. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread: A Multiple Pig - Multiple Bacterial Strain Model. PLoS One,9: e100458. DOI: 10.1371/journal. pone.0100458
Hasani B, Banani M, Nouri A, Goudarzi H & Mahmoudzadeh-Akhijahani M. 2017. Detection of three virulence genes and antibiotic resistance profiles in Escherichia coli isolates from commercial broilers with colibacillosis in Tabriz, Iran. Archives of Razi Institute, 72: 1-8. DOI: 10.22034/ari.2016.107491
Hemmatinezhad B, Khamesipour F, Mohammadi M, Safarpoor-Dehkordi F & Mashak Z. 2015. Microbiological investigation of O-serogroups, virulence factors and antimicrobial resistance properties of shiga toxin-producing Escherichia coli isolated from ostrich, turkey and quail meats. Journal of Food Safety,35: 491-500. DOI: 10.1111/jfs.12199
Hosseini A, Salari S, Rashki A & Jahantigh M. 2019. Presence of two genes involved in serum resistance of Escherichia coli isolated from healthy ostriches in comparison with infected poultry by colibacillosis. Journal of Veterinary Research,74: 143-152. DOI: 10.22059/jvr. 2017.234300.2635
Jahantigh M & Esmailzade-Dizaji R. 2015. Antimicrobial drug resistance pattern of Escherichia coli isolated from chickens farms with colibacillosis infection. Open Journal of Medical Microbiology,5: 159-162. DOI: 10.4236/ ojmm.2015.54019
Kazemnia A, Ahmadi M & Dilmaghani M. 2014. Antibiotic resistance pattern of different Escherichia coli phylogenetic groups isolated from human urinary tract infection and avian colibacillosis. Iranian Biomedical Journal,18: 219-224. DOI: 10.6091/ibj.1394.2014
Mohamadi E, Alizade H, Askari N, SalehI M, Porjafarian M &Ghanbarpour R. 2015. Antibiotic resistance profile in relation to phylogenetic background in Escherichia coli isolated from fecal samples of healthy ostrich. International Journal of Enteric Pathogens,3: 1-4. DOI: 10. 17795/ijep25366
Mohammadi V, Ghaniei A & Sepehrnia P. 2018. Antimicrobial resistance profile and prevalence of tetracycline resistance genes in Escherichia coli isolates from broiler chickens, northwestern Iran. Bulgarian Journal of Veterinary Medicine,21: 169-175. DOI: 10.15547/bjvm.1046
Namkung H, Li J, Gong M, Yu H, Cottrill M & De-Lange CFM. 2004. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Canadian Journal of Animal Science, 84: 697-704. DOI: 10. 4141/A04-005
Nhung NT, Chansiripornchai N & Carrique-Mas JJ. 2017. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Frontiers in Veterinary Science,4: 126. DOI: 10.3389/ fvets.2017.00126
Persoskie A & Ferrer RA. 2018. A most odd ratio: interpreting and describing odds ratios. American Journal of Preventive Medicine,52: 224-228. DOI: 10.1016/j.amepre.2016.07.030
Quinn PJ, Markey BK, Carter ME, Donnelly WJC & Leonar FC. 2002. Veterinary Microbiology and Microbial Disease. 2nd Ed. Wiley-Blackwell. New Jersey. 928 Pages.
Rahimi M. 2013. Antibioresistance profile of avian pathogenic Escherichia coli isolates recovered from broiler chicken farms with colibacillosis in Kermanshah province, Iran. Global Veterinaria,10: 447-452. DOI: 10.5829/idosi.gv. 2013.10.4. 72198
Ranjbar-Malidareh N, Firouzi S, Ranjbar-Malidareh N & Habibi H. 2013. In vitro and in vivo susceptibility of Salmonella spp. isolated from broiler chickens. Comparative Clinical Pathology, 22:1065–1068. DOI: 10.1007/s00580-012-1527-1
Rezaei Far A, Peighambari SM, Sadrzadeh A & Askari-Badouei M. 2013. Bacterial contamination of dead-in-shell embryos in ostrich hatcheries and antimicrobial resistance patterns of isolated Escherichia coli. Iranian Journal of Veterinary Medicine,7: 169-175. DOI: 10.22059/ ijvm. 2013.35967
Sadeghi Bonjar MS, Salari S, Jahantigh M & Rashki A. 2017. Frequency of iss and irp2 genes by PCR method in Escherichia coli isolated from poultry with colibacillosis in comparison with healthy chicken in poultry farms of Zabol, South East of Iran. Polish Journal of Veterinary Sciences,20: 363-367. DOI: 10.1515/pjvs-2017-0044
Salari S. 2020a. Details of the data of the antibiotic sensibility testing of E. coli of healthy ostrich and poultry with colibacillosis. Mendeley Data.  DOI: 10.17632/zbn22gnn3c.2
Salari S. 2020b. Details of the specification of different MDR pattern (P1-4) according to the antibiotypes of the isolates. Mendeley Data.  DOI: 10.17632/brx6gb5887.2
Scerbova J & Laukova A. 2016. Escherichia coli strains from ostriches and their sensitivity to antimicrobial substances. Polish Journal of Veterinary Sciences, 19: 415-423. DOI: 10.1515/ pjvs-2016-0052
Scott HM, Acuff G, Bergeron G, Bourassa MW, Gill J, Graham DW, Kahn LH, Morley PS, Salois MJ & Simjee S. 2019. Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Annals of the New York Academy of Sciences,1441: 8. DOI: 10.1111/nyas.14058
Seifi S, Khoshbakht R & Atabak AR. 2015. Antibiotic susceptibility, serotyping and pathogenicity evaluation of avian Escherichia coli isolated from broilers in northern Iran. Bulgarian Journal of Veterinary Medicine,18: 173-179. DOI: 10.15547/bjvm.819
Shahbazi P, Jahantigh M & Salari S. 2018. Antibiotial resistance pattern and prevalence of some extende-spectrum beta-lactamase genes in Escherichia coli isolated from turkey. Veterinary Researches & Biological Products,31: 2-8. DOI: 10.22092/vj.2018.121259.1447
Szumilas M. 2010. Explaining odds ratios. Journal of the Canadian Academy of Child and Adolescent Psychiatry,19: 227-229. PMCID: PMC2938757
Talebiyan R, Kheradmand M, Khamesipour F & Rabiee-Faradonbeh` M. 2014. Multiple antimicrobial resistance of Escherichia coli isolated from chickens in Iran. Veterinary Medicine International,2014: 491418. DOI: 10.1155/2014/491418
Tavakkoli H, Derakhshanfar A & Salandari S. 2014. Investigation on the using of linco-spectin solution for in ovo administration in chicken embryo. International Journal of Advanced Biological and Biomedical Research, 2:110-116. Accessed on September 10. 2019.
Zakeri A & Kashefi P. 2012. Isolation and drug resistance patterns of Escherichia coli from cases of colibacillosis in Tabriz. Journal of Animal and Veterinary Advances, 11: 3550-3556. DOI: 10.3923/javaa.2012.3550.3556