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This study evaluated the effects of organic selenium supplementation at 

different concentrations on laying hen performance, egg quality, and 

antioxidant status. We hypothesized that increasing levels of organic 

selenium would improve egg quality, antioxidant capacity, and Se 

deposition, outperforming inorganic selenium. This study provides novel 

insights by using a unique yeast strain (PTCC5052) and evaluating nonlinear 

Se dose–response patterns. A total of 360 Super Nick hens (38 weeks old) 

were randomly assigned to six groups and fed either a control diet (no 

selenium), a diet with 0.3 mg/kg Se from an inorganic source, or 0.1, 0.2, 

0.3, or 0.4 mg/kg Se from an organic source derived from Saccharomyces 

cerevisiae PTCC5052—a unique yeast strain. Over 10 weeks, egg 

production, feed conversion ratio, egg quality, and Se deposition in eggs 

were assessed. Production performance was not significantly affected by 

selenium supplementation. However, hens receiving 0.3 and 0.4 mg/kg of 

organic Se showed significantly thicker eggshells and higher egg selenium 

content (P < 0.05). Antioxidant enzyme activities (glutathione peroxidase, 

superoxide dismutase) were significantly enhanced in organic Se groups, 

while malondialdehyde levels were reduced (P < 0.05). The strongest 

antioxidant capacity was observed at 0.1–0.2 mg/kg Se, suggesting a 

nonlinear dose–response pattern. Serum protein, uric acid, AST, and ALT 

remained unchanged. These results demonstrate that organic selenium from 

S. cerevisiae PTCC5052 improves egg quality and antioxidant capacity 

without affecting production performance, highlighting the importance of 

selenium source and dose–response dynamics. 
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Introduction 

Selenium (Se) is an essential trace element in animal 

physiology, participating in various critical biological 

functions (Bai ShiPing et al., 2017; Bodnar et al., 

2012). Selenium is absorbed mainly in the small 

intestine. Organic compounds, including 

selenomethionine and selenocysteine, show higher 

bioavailability and tissue retention than inorganic 

forms like selenite and selenate (Abdelqader et al., 

2013; Agus et al., 2018; Alagawany et al., 2021; Lu 

et al., 2018). After absorption, Se binds to proteins 

and contributes to selenoprotein synthesis, including 

glutathione peroxidases and thioredoxin reductases, 

which are central to antioxidant defense, thyroid 

metabolism, and immune regulation (Attia et al., 

2020; Bao et al., 2010; Baylan et al., 2011; Kieliszek 

& Błażejak, 2013; Novoselec et al., 2022; Thiry et 

al., 2012). The antioxidant properties of organic Se 

can alleviate oxidative stress, which negatively 

affects animal welfare and productivity (Elnesr et al., 

2024). Selenium is also crucial for enzymatic activity, 

immune function, and detoxification, emphasizing its 
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role in maintaining health and preventing oxidative 

damage. Notably, certain microorganisms, 

particularly yeast species, can incorporate substantial 

amounts of Se into proteins, mainly as 

selenomethionine, considered the most effective 

organic Se form. 

Yeast strains of the Saccharomyces genus are 

widely used in mineral biobinding studies due to 

rapid growth, high biomass yield, cost-effectiveness, 

and safety. Their cell walls contain phosphomannan 

and surface proteins with functional groups such as 

carboxyl, hydroxyl, amine, phosphate, and 

hydrosulfide. These structures facilitate efficient 

absorption and accumulation of microminerals at high 

concentrations (De Nicola et al., 2009; Yuan et al., 

2011). Se-enriched yeast offers enhanced 

bioavailability and safety compared to inorganic Se 

supplements (Elnesr et al., 2024; Han et al., 2017; 

Surai & Kochish, 2019; Zhang et al., 2020). Selenium 

also plays a key role in reproductive health, fertility, 

and embryonic development (Zhang et al., 2021). 

Dietary selenium improves laying performance and 

egg quality, supporting animal health and 

productivity (Abou–Ashour et al., 2023; Zhang et al., 

2021). However, previous studies often did not 

evaluate multiple inclusion levels of organic Se or 

directly compare organic versus inorganic Se. This 

study aims to fill this gap by testing a range of 

organic Se doses and comparing them with an 

inorganic control. 

Specifically, we investigated the effects of dietary 

supplementation with organic Se derived from S. 

cerevisiae PTCC5052 on production parameters, egg 

quality, antioxidant status, and selected blood 

parameters in laying hens. By assessing dose-

response relationships, this study addresses the 

novelty gap and identifies optimal Se 

supplementation strategies. 

 

Materials and Methods  

Se-enriched Yeast 

Initially, Saccharomyces cerevisiae was employed to 

produce organic Se. Yeast cells were gradually 

adapted to sodium selenite (Na₂SeO₃) to enable Se 

incorporation into amino acids, particularly 

methionine and cysteine, forming selenomethionine 

and selenocysteine. The culture medium was 

optimized using Design Expert software, 

fermentation was performed in a fermentor, and the 

final product was spray-dried and mixed with 

maltodextrin before inclusion in poultry diets (Gong 

et al., 2023; Tan et al., 2025). The Se concentration 

of the final yeast preparation was verified using 

atomic absorption spectroscopy to ensure consistent 

dosing. 

 

Experimental Design 

A total of 360 Super Nick laying hens (38 weeks old) 

were randomly assigned to six treatment groups (10 

replicates per group, 6 hens per replicate, 60 hens per 

treatment). Treatments were as follows (See Table 1): 

Group 1: Negative control (Se-deficient basal diet), 

Group 2: Positive control (0.3 mg/kg inorganic Se as 

sodium selenite), Group 3: Basal diet + 0.1 mg/kg 

organic Se, Group 4: Basal diet + 0.2 mg/kg organic 

Se, Group 5: Basal diet + 0.3 mg/kg organic Se, 

Group 6: Basal diet + 0.4 mg/kg organic Se. A 2-

week adaptation period with a basal diet was 

conducted before the trial. Daily egg production and 

weekly feed intake were recorded to establish 

baseline performance. This design allowed evaluation 

of the dose-response effects of organic Se. 

 

Table 1: Dietary treatments and selenium levels 

Group Treatment description 
Selenium level (mg/kg) 

(Se in the premix) 
   Source 

1 Negative control 0.0 Basal diet 

2 Positive control (inorganic) 0.3 Sodium selenite 

3 Organic Se (low) 0.1 Se-enriched yeast 

4 Organic Se (medium-low) 0.2 Se-enriched yeast 

5 Organic Se (medium-high) 0.3 Se-enriched yeast 

6 Organic Se (high) 0.4 Se-enriched yeast 

Summary of the six experimental treatments used in the study. Se levels indicate the amount of selenium supplemented per 

kilogram of diet. Inorganic Se was provided as sodium selenite(Na2SeO3) and organic Se as Se-enriched yeast. 

 

Diet and Feeding 

A corn–soybean meal basal diet met or exceeded 

Supernick nutrient recommendations (See Table 2). 

The basal diet served as the 0 ppm Se control. 

Selenium was added as Se-enriched yeast (0.1–0.4 

ppm) or sodium selenite (0.3 ppm) for respective 

groups. Feed and egg collection schedules were 

standardized. Lighting: 16 h light, 8 h dark. 
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Table 2: Ingredients and nutrient levels of the basal diet 

Ingredients (%) Composition 

Corn 63 

Soybean meal 25.41 

Limestone 9 

Mono Calcium Phosphate 1.20 

DL-Methionine 0.19 

NaCl 0.24 

NaHCO3 0.19 

Vitamin and mineral premix* 0.50 

Choline-HCl 0.07 

Permix 0.20 

Nutrients (%)  

Metabolizable energy (Kcal/Kg) 2730 

Crude protein 16 

Calcium 3.70 

Available phosphorus 0.37 

Sodium 0.17 

Digestible methionine 0.44 

Digestible methionine + cystin 0.66 

Digestible lysine 0.74 

Digestible threonine 0.51 
*Premix includes (per kilogram of diet): Vitamin A: 10,000 IU; Vitamin D3:2,500 IU; Vitamin E: 20 IU; Cobalamine: 

0.015mg; Riboflavin: 4 mg; Niacin: 30 mg; Pantothenic acid: 10 mg; Menadione: 3 mg; Folic acid: 0.5 mg; Pyridoxine: 3 

mg; Thiamine: 1 mg; Biotin: 0.05 mg; Manganese: 100 mg; Zinc: 60 mg; Iron: 25 mg; Copper: 5 mg; and Iodine: 0.5 mg. 

 

Laying Hens’ Performance 

Daily egg production was recorded. Weekly egg 

production (%) was calculated per replicate: weekly 

eggs ÷ hen-days × 100. Hen-days = total viable birds 

per replicate × days. Weekly FCR = feed intake ÷ 

total egg mass. Composite FCR = average of weekly 

FCR over 70-day trial. Average daily feed intake = 

total feed ÷ number of birds ÷ days. Egg weight and 

mass were recorded daily. Body weight gain = final – 

initial body mass.  

 

Egg Quality 

Egg quality was evaluated using 360 eggs (60 per 

treatment). Measurements included egg weight, Yolk 

and albumen Weight, and eggshell thickness 

(measured at three points with a micrometer). Se 

concentration in eggs was determined by microwave 

digestion (HNO₃–H₂O₂) and atomic absorption 

spectroscopy (Lipiec et al., 2010). 

 

Hematological and Biochemical Analysis 

Ten hens were randomly selected per treatment (n = 

60). Blood samples (3 mL) were collected from the 

alar vein of one bird per replicate. Samples were 

divided for hematological (EDTA tubes) and serum 

biochemical analyses (clot activator tubes). After 

centrifugation (5,000 g, 15 min), serum was stored at 

−20 °C. Analyses included uric acid, total protein, 

AST, ALT, total antioxidant capacity (TAC) 

(Fingerova et al., 2007), glutathione peroxidase 

(GPx), superoxide dismutase (SOD) (Madi et al., 

2016), and malondialdehyde (MDA), following 

standard protocols and commercial kits (Darman 

Faraz Kave, Randox Iran, Isfahan). 

 

Statistical Analysis 

The experiment was conducted using a completely 

randomized design (CRD). Hens were randomly 

allocated to six dietary treatments to minimize bias. 

Data were analyzed using SPSS software (version 

2022). Assumptions of normality and homogeneity of 

variances were checked prior to analysis. One-way 

ANOVA was performed to detect treatment effects. 

When significant differences were found, Tukey’s 

HSD post hoc test was applied for multiple 

comparisons. Statistical significance was declared at 

P < 0.05. The cage served as the experimental unit 

for performance and egg quality traits, while 

individual birds were considered for hematological 

and biochemical measurements. 

 

Results and Discussion  

Laying Hens’ Performance 

Table 3 summarizes the performance outcomes of 

laying hens across the six treatment groups. Overall, 

no statistically significant differences were observed 

among treatments for egg production, feed 

conversion ratio (FCR), average daily feed intake, 

egg weight, egg mass, or hen body weight gain (P > 

0.05 for all parameters). Although no significant 

differences were detected, a numerical trend toward 

improved FCR and egg mass was observed with 

increasing levels of organic Se, suggesting a potential 

dose-dependent improvement in feed utilization 
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efficiency. These findings align with previous studies, 

for example, Pavlović et al. (2009) in a 16-week 

study evaluating 0.4 mg/kg and 0.8 mg/kg of sodium 

selenite and Se-enriched yeast, reported no significant 

influence of dietary Se form or concentration on FCR 

(P > 0.05). Likewise, C Chinrasri et al. (2009) 

showed that FCR was not affected by Se source or 

supplementation levels of 0.3, 1, or 3 mg/kg. 

Although the absence of statistical significance aligns 

with the literature, the consistent numerical 

improvement in FCR at higher organic Se levels 

suggests a possible dose-dependent trend that may 

become more pronounced with a longer 

supplementation period. 

 

Table 3: Effects of different selenium sources on laying performance 

Treatment 

Egg  

production  

(%) 

FCR 

(g of feed/g of 

egg) 

Average daily 

feed intake 

(grams /bird 

/day) 

Egg 

weight(g) 

Egg mass 

(g/hen/day) 

Hen weight 

gain (g) 

Negative Control 93.72±1.23 1.63±0.18 98.49±1.01 64.37±0.94 60.30±1.82 75.70±2.56 

Positive Control 95.04±1.85 1.59±0.21 98.92±1.16 65.18±1.42 61.90±2.23 76.50±2.68 

0.1 mg/kg organic Se 94.67±2.01 1.58±0.52 96.94±2.18 64.79±0.99 61.30±2.25 85.70±3.85 

0.2 mg/kg organic Se 96.57±2.36 1.56±0.58 99.36±2.64 65.52±1.40 63.30±2.34 80.70±3.25 

0.3 mg/kg organic Se 95.39±2.17 1.58±1.08 98.70±2.53 65.36±1.09 62.30±2.28 78.30±3.16 

0.4 mg/kg organic Se 96.64±2.39 1.55±1.18 98.32±2.49 65.39±1.36 63.20±2.26 77.80±2.84 

P-value 0.11 0.35 0.07 0.21 0.90 0.49 

The results are presented as mean ± standard deviation (SD).  

 

Egg Quality Parameters 

Table 4 displays the measurements of egg quality 

characteristics observed across the experimental 

groups. Statistical analysis revealed significant 

differences (P < 0.05) between the control and 

inorganic Se groups compared to organic Se-

supplemented treatments. Notably, yolk and albumen 

weights increased in response to higher levels of 

organic Se, with the 0.4 mg/kg group exhibiting the 

highest values for both parameters. 

Among prior studies, Stibilj et al. (2004) also 

reported a significant increase in albumen weight 

following dietary inclusion of 0.3 mg/kg of Se-

enriched yeast in laying hens. In the present study, 

dietary supplementation with organic selenium 

significantly enhanced eggshell thickness (P < 0.05) 

and increased selenium deposition in eggs. These 

results corroborate the findings of Arpášová et al. 

(2009), who demonstrated similar improvements 

using Se-enriched yeast. However, other studies 

reported inconsistent results. Utterback et al. (2005) 

and Skrivan et al. (2006) found no significant 

differences (P > 0.05) in eggshell thickness between 

hens fed 0.3 mg/kg of Se-enriched yeast and those 

receiving sodium selenite. Similarly, Qiu et al. (2021) 

concluded that eggshell thickness was not affected by 

Se source at supplementation levels of 0.3, 1, and 3 

mg/kg.

 

Table 4: Effects of different selenium sources on egg quality parameters 

Treatment 
Yolk and albumen 

weight (g) 

% of total egg  

weight 

Eggshell  

thickness (mm) 

 Selenium 

concentration (ppm) 

Negative Control 35.51±0.90b 55.17 % 0.44±0.03b 0.07±0.05c 

Positive Control 36.92±1.19b 56.64 % 0.44±0.02b 0.15±0.08c 

0.1 mg/kg organic Se 40.41±2.45a 62.37 % 0.45±0.00b 0.22±0.32c 

0.2 mg/kg organic Se 40.18±1.76a 61.32 % 0.47±0.01ab 0.28±0.41bc 

0.3 mg/kg organic Se 41.19±1.84a 63.02 % 0.49±0.01a 0.42±0.46a 

0.4 mg/kg organic Se 41.84±1.08a 63.99 % 0.49±0.01a 0.35±0.32ab 

P-value <0.001 <0.001 <0.001 <0.001 

The results are presented as mean ± standard deviation (SD). Significance level of P<0.05. Means with  different letters in 

column (a, b, c) indicate significant differences between treatments. 

 

Importantly, dietary inclusion of organic selenium 

resulted in a significant elevation (P<0.01) of total 

selenium content in eggs. The highest Se 

concentration was observed in Treatment 5 (0.3 

mg/kg organic Se). The decline in Se deposition at 

0.4 mg/kg compared to 0.3 mg/kg may be attributed 

to a saturation of intestinal Se absorption or 

homeostatic regulation mechanisms, which limit 
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excessive Se accumulation. Interestingly, Se 

deposition in eggs followed a nonlinear pattern, 

showing a plateau beyond 0.3 mg/kg, suggesting a 

saturation effect in Se incorporation into egg 

components. This nonlinear trend is consistent with 

previous reports indicating that Se deposition 

efficiency decreases at higher dietary Se levels, likely 

due to metabolic regulation of Se absorption and 

incorporation (Powers & Jackson, 2008). 

These findings align with multiple studies 

demonstrating that Se-enriched yeast is more efficient 

than inorganic sources (e.g., sodium selenite) in 

increasing egg Se content. This enhanced 

bioavailability is mainly attributed to the presence of 

selenomethionine in Se-enriched yeast, which is 

actively absorbed and incorporated into egg proteins. 

Wang et al. (2022) demonstrated that 

selenomethionine is effectively integrated into eggs, 

mimicking methionine utilization pathways. 

Moreover, selenomethionine can be converted to 

selenocysteine and subsequently to selenite (Chen et 

al., 2024). 

While animals can synthesize selenomethionine 

from inorganic Se, the underlying metabolic 

pathways are not fully elucidated (Khan et al., 2025). 

Nevertheless, evidence supports that organic Se is 

more effective in supporting selenoprotein synthesis 

than inorganic sources (Piray et al., 2025). 

Consistently, eggs from hens receiving Se-enriched 

yeast exhibited higher yolk Se content than those 

from sodium selenite or selenocysteine 

supplementation (Fisinin et al., 2008; Hachemi et al., 

2023; Vlaicu & Untea, 2025). This highlights Se-

enriched Saccharomyces cerevisiae as a superior 

source for producing Se-enriched functional eggs. 

 

Hematological Parameters 

Table 5 provides a comparative overview of blood 

biochemical parameters and antioxidant status across 

treatment groups. Significant differences (P<0.05) 

were observed in antioxidant enzyme activity among 

treatments. All organic Se treatments (0.1, 0.2, 0.3, 

and 0.4 mg/kg) differed significantly from both the 

control and inorganic Se groups. Hens supplemented 

with organic Se exhibited lower MDA levels 

(P<0.01) and higher GPx and SOD activities 

(P<0.05) compared with the control group. The 

observed reduction in SOD activity at the highest Se 

level, despite increased GPx activity, may reflect an 

adaptive antioxidant response or inhibitory feedback 

at supranutritional Se levels. Notably, MDA levels 

were significantly reduced in the 0.3 and 0.4 mg/kg 

groups, reflecting the potent antioxidant capacity of 

organic Se. Conversely, MDA was highest in the 

inorganic Se treatment. GPx and SOD activities were 

markedly elevated in the 0.4 mg/kg group, suggesting 

that higher doses of organic Se may enhance 

oxidative stress defense mechanisms. 

 

Table 5:| Effects of different selenium sources on hematological parameters 

Treatment 
MDA 

(nmol/ml) 

SOD 

(u/g hb) 

GPx 

(u/g hb) 

TAC 

(mmol/L) 

Uric acid 

(mg/dl) 

AST 

(u/l) 

ALT 

(u/l) 

Pro 

(g/dl) 

Negative 

Control 
a2.57±0.29  a749.62±23.39 c46.50±3.93 d1.10±0.09 4.70±1.14 160±13.33 16.20±3.15 5.79±0.60 

Positive Control b3.25±0.35 b677.18±14.58 c44.20±4.60 cd1.30±0.16 5.30±0.90 157±14.94 17±3.09 6.03±0.59 

0.1 mg/kg 

organic Se 
 b2.70±0.20 a773.40±14.58 b75.30±7.12 ab1.70±0.16 4.90±1.18 155±21.21 14.90±2.88 6.07±0.74 

0.2 mg/kg 

organic Se 
c1.61±0.37 a762.82±59.68 b75.00±5.84 a1.80±0.29 4.70±0.38 156±11.73 14.70±2.40 6.01±0.35 

0.3 mg/kg 

organic Se 
cd1.27±0.34 a765.68±36.36 b76.20±4.71 bc1.40±0.14 5.10±0.79 154±20.65 14.60±2.27 5.65±0.38 

0.4 mg/kg 

organic Se 
d1.17±0.27 c633.90±12.07 a83.60±5.32 bc1.40±0.11 5.50±0.87 155±12.69 15.40±2.83 5.81±0.28 

P-value <0.001 <0.001 <0.001 <0.001 0.14 0.33 0.33 0.25 

The results are presented as mean ± standard deviation (SD). Significance level of P< 0.05. Means with different letters in 

column (a, b, c) indicate significant differences between treatments. 

 

Similarly, TAC was significantly improved 

(P<0.05) in the 0.1 and 0.2 mg/kg organic Se groups 

compared with both control and inorganic groups, 

with progressive increases observed at higher 

supplementation levels. Literature indicates that Se 

influences GPx activity through pre-translational 

regulation of GPx gene expression and mRNA 

stability. The inverse association between MDA 

levels and GPx activity observed in this study is well 

established (Ahmad et al., 2012), confirming that 

enhanced antioxidant enzyme activity corresponds 

with reduced oxidative damage.     SOD, a major 

enzymatic antioxidant, catalyzes the conversion of 

superoxide radicals to hydrogen peroxide and 
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oxygen, thereby mitigating reactive oxygen species. 

Organic Se enhances antioxidant defenses not only 

through enzymatic activity but also via non-

enzymatic pathways involving molecules such as 

glutathione and vitamin E (Lu et al., 2020). 

Uric acid levels did not differ significantly (P> 

0.05) among groups, nor were there significant 

changes in AST or ALT levels, indicating that Se 

supplementation—particularly organic Se—did not 

adversely affect liver function (Islam et al., 2024). 

Likewise, total protein levels remained unchanged, 

consistent with previous studies showing no 

significant impact of Se on protein metabolism or 

serum protein concentrations (Abdel Magied et al., 

2020). Unchanged AST and ALT levels indicate no 

hepatotoxic effect of Se supplementation within the 

tested range. 

 

Considerations on Intervention Duration 

It is important to acknowledge that the intervention 

duration (70 days) may have influenced the extent of 

observable effects. This timeframe was chosen for 

practical and ethical reasons, including adherence, 

logistical feasibility, and animal welfare. However, it 

is possible that this relatively short duration was 

insufficient for certain physiological responses to 

fully manifest, which may explain why some results, 

despite showing trends, did not reach statistical 

significance. Future studies with extended 

intervention periods may provide a more 

comprehensive understanding of the long-term and 

cumulative effects of organic Se supplementation. 

 

Conclusion 

This study demonstrates that dietary supplementation 

with organic selenium, particularly Se-enriched yeast, 

improves egg quality and enhances antioxidant 

capacity in laying hens. These improvements can help 

maintain bird health and reduce disease risk, 

especially under environmental stress conditions. 

Beyond production benefits, Se-enriched eggs offer 

added nutritional value for consumers, supporting the 

development of functional food products. This 

provides poultry producers with opportunities to 

differentiate their products and enhance market value. 

Overall, organic selenium supplementation represents 

a practical and sustainable strategy to improve both 

animal health and product quality in commercial egg 

production. 
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