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Abstract

Accurate gastrointestinal transit time was essential to the digestibility
determination tests. However, the effects of different feedstuffs on intestinal
transit time remain unclear. The aim of this study was to investigate the effect
of different feedstuffs on the gastrointestinal transit time of 18-wk-old geese.
A total of 80 male Magang geese of 18 weeks old were weighed individually
and randomly divided into 10 groups with eight geese per group. Ten
treatment groups were fed corn, sorghum, wheat, soybean meal, cottonseed
meal, rapeseed meal, 25% rice bran and hulls (RBH), 50% RBH, 75% RBH,
and 100% RBH, respectively. Fresh excreta samples were collected and
weighed from each pen every 6 h during the next 48 h after being tube-fed.
Excreta weight increased significantly during the first 24 h after tube-feeding
of all feedstuffs (P< 0.05). From 24 to 48 h, no significant changes were
observed in excreta weight following tube-feeding of cereal or protein source
feedstuffs (P> 0.05). In contrast, birds tube-fed diets containing 25% to 100%
RBH showed a progressive increase in excreta weight from 24 to 36 h post-
tube-feeding, after which excreta output remained stable. No significant
changes in TiO: recovery were observed in excreta following tube-feeding of
cereal or protein source feedstuffs from 24 to 48 h, whereas birds tube-fed
diets containing different levels of RBH showed an increase in TiO- recovery
from 24 to 36 h, which then remained stable. In conclusion, for Magang geese,
the optimal gastrointestinal transit time was 24 h for cereal and protein source
feedstuffs, in which diets with different fiber contents require a relatively
prolonged period of 24-36 h.

Introduction

nutrient digestion and absorption (McNab and Blair,

Over the past several decades, the tube-feeding
technique has been widely applied to determine the
metabolizable energy (ME) of poultry feedstuffs
(Sibbald, 1976; Dudley-Cash, 2009). This method is
valued for its simplicity, accuracy, and independence
from feed palatability (Farrell, 1978). Apparent
metabolizable energy (AME) is defined as gross
energy intake minus excreta energy, while true
metabolizable energy (TME) further corrects AME for
endogenous losses (Macelline et al., 2020). Despite
these advantages, the accuracy of ME determination
depends on gastrointestinal transit time, which affects

1988). Most ME studies have been conducted in
chickens, yet geese differ markedly in digestive
anatomy and physiology, making extrapolation
unreliable. Compared with chickens, geese have
shorter intestines relative to body weight (Hallsworth
et al., 1992), but compensate with larger gizzards and
ceca that enhance fiber breakdown and fermentation
(Yan et al., 2019). The goose gizzard can generate
much higher pressures than that of chickens, enabling
efficient grinding of fibrous material, while the
developed ceca provide extended microbial
fermentation (Jamroz et al., 2001). These traits reflect
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the adaptation of geese to forage-rich diets, in contrast
to chickens’ limited fiber utilization.

Feed type is another key factor influencing
gastrointestinal passage. High-fiber diets increase
digesta bulk and slow passage, enhancing microbial
fermentation, whereas highly digestible diets
accelerate transit and shorten nutrient absorption time
(Svihus et al., 2013). In geese, retention times of fiber
fractions vary among segments, with the gizzard,
duodenum, and ceca playing major roles in NDF,
ADF, and hemicellulose digestion, respectively (Lou
etal., 2010). Such anatomical and dietary effects make
it essential to evaluate feed-dependent transit
dynamics specifically in geese. Therefore, this study
was conducted to investigate the effects of different
feed types on intestinal transit time in Magang geese,
aiming to provide a theoretical basis for more accurate
ME determination in waterfowl.

Materials and Methods

The animal care and use protocol was approved by the
Institutional Animal Care and Use Committee of South
China Agricultural University (SCAU-10564), and the
study was performed following the Regulations for the

Administration of Affairs Concerning Experimental
Animals.

Ingredients

A total of six feedstuff samples, including three cereal
feedstuffs (corn, sorghum, and wheat), three plant
protein sources (soybean meal, SBM, cottonseed meal,
CSM, and rapeseed meal, RSM), and four diets with
different fiber levels (10%, 20%, 29.9%, and 39.9%)
consisting of 25%, 50%, 75%, and 100% rice bran and
hulls (RBH), were applied in the study. All samples
were ground through a 0.5-mm screen to ensure a fine
particle size, and each sample was analyzed in
triplicate for dry matter (DM, method 934.01), crude
protein (CP, method 954.01), ether extract (EE,
method 920.39), crude fiber (CF, method 978.10), ash
(method 942.05), calcium (Ca, method 927.02), and
total phosphorus (TP, and method 985.01) according
to the classical procedures of the AOAC (2016)
respectively, while the neutral detergent fiber (NDF)
and acid detergent fiber (ADF) contents of feedstuff
samples were determined according to the previous
method (van Soest and Mason, 1991). Chemical
composition of the feedstuff samples was presented in
Table 1.

Table 1: Chemical composition of feedstuff samples in the present study % on DM basis

Items? DM CP EE CF Ash NDF ADF Ca TP

Corn 87103  840£005 360:002 1602002 130001 930051 2.70£0.08 002:0.002 0.27%0.001
Sorghum 87+02  9.10£0.03 340:001 140+001 1804003 17.40+133 8.00£0.57 0.13+0.001 0.36+0.011
Wheat 87+02 13.90£0.04 170:003 190:002 190002 1330148 3.90£0.29 0.17+0.002 0.41%0.023
Soybean meal  89+0.1 4280002 580002 4.80:0.03 590002 18.10+1.02 1550+132 0.31+0.001 0.50+0.025
Rapeseed meal ~ 88+02  36.70:002 7.40:0.02 1140004 7.20+004 3330+169 26004362 0590.020 0.96:0.02
g‘;gf’nseed 90+0.4 4330005 050004 10504002 4.90+0.06 28.40+135 19.40+2.16 0.28+0.018 1.04+0.101
El;fle branand 9505 3901004 4108006 39.90:0.06 7.50:0.05 74.804349 64.70+4.47 0.07:0.002 1.43:0.122

! The average data based on triplicate determinations.

DM, dry matter; CP, crude protein; EE, ether extract; CF, crude fiber, NDF, neutral detergent fiber; ADF, acid detergent fiber;

Ca, calcium; TP, total phosphorus;

Experimental design

A total of 80 male Magang geese, 18 weeks of age,
with an average body weight of 4.20 + 0.24 kg, were
individually weighed and randomly allocated into 10
treatment groups, with 8 geese assigned to each
feedstuff sample. Cereal feedstuffs, including corn,
sorghum, and wheat, were offered as the sole dietary
ingredient to determine their effect on gastrointestinal
transit time for geese. In contrast, plant protein
feedstuffs including SBM, CSM, and, RSM were
incorporated into a semi-purified basal diet composed
of 60% corn starch and 40% test ingredient to ensure
balanced nutrient supply while assessing the
gastrointestinal transit time for geese.

The four fiber levels diet was tested as 25%
RBH+75% corn starch, 50% RBH+50% corn starch,
75% RBH+25% corn starch, and 100% RBH. All test
diets contained 1% TiO,. The total excreta samples

were collected during the next 48 h after the tube-
feeding assay.

Tube-feeding assay

The procedure of tube-feeding assay was conducted
according to the previous study (Sibbald, 1976).
Firstly, pre-weighed geese were individually caged in
a climate-controlled room (25°C) under constant light
for 7 days of adaptation. After a 36-hour fast, an 80 g
test diet with 1% titanium dioxide (Ti0z) was tube-fed
directly into the crop using a 60-mL catheter-tip
syringe and 35-cm long, 8-mm internal diameter
Nalgene™ tubing. Finally, fresh excreta samples were
collected and weighed from each pen every 6 h during
the next 48 h after being tube-fed. The TiO; content in
the ashed excreta was determined according to Hetland
and Svihus (2001). TiO. was included in all
experimental diets at 0.5% as an inert marker to
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monitor feed passage and excreta recovery. Excreta
were collected at 24, 36, and 48 h after tube-feeding,
and TiO: recovery was calculated as the ratio of TiO:
recovered in excreta to the amount initially
administered. High recovery rates indicate uniform
marker distribution and reliable excreta collection,
ensuring accurate metabolizable energy and nutrient
digestibility = measurements.  Lower  recovery,
particularly in high-fiber diets, may result from
prolonged digesta transit or uneven marker distribution
and was considered when interpreting energy values.

Statistical analysis

Statistical analysis was performed using one-way
ANOVA (General Linear Model procedure, SAS; SAS
Institute, Cary, NC). Treatment means were
compared for significant differences using the LSD
test. Data are expressed as means £ SEM, where means
lacking a common letter differ at P< 0.05. Figures
were created with GraphPad Prism version 8.3.0
(GraphPad Software, USA).

Results
Temporal changes in excreta weight after tube-
feeding are shown in Figures 1 and 2. For cereal (corn,

sorghum, wheat) and protein (soybean, rapeseed,
cottonseed) feedstuffs, excreta increased significantly
from 6 to 18 h (P< 0.05) and plateaued thereafter,
indicating gastrointestinal transit was largely
completed within 24 h. Protein meals generated higher
excreta output (21-23 g at 18 h) than cereals (~6-18
0), likely due to greater bulk and fiber content. For rice
bran and hull diets, excreta output increased in a dose-
dependent manner. Plateau values were ~20, 30, 35,
and >50 g for 25%, 50%, 75%, and 100% inclusion,
respectively. Excreta increased significantly from 6 to
18-24 h (P< 0.05) before stabilization, demonstrating
that high-fiber feedstuffs prolong gastrointestinal
transit and elevate excreta output proportionally to
inclusion level.

TiO2 recovery remained high (96-99%) for
cereal- and protein-based diets across all sampling
times (P> 0.05), confirming its reliability as an inert
marker. Recovery declined at higher inclusion levels
of rice bran and hull, from 96.8% (25%) to 81.2%
(100%) at 24 h (P< 0.05), but improved to 96.97—
98.47% at 48 h. These results suggest that excessive
fiber reduces marker homogeneity and fecal recovery,
likely due to prolonged digesta passage.
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Figure 1. Weight of excreta after 6 to 48 hours of tube-feeding with cereal or protein feedstuffs
* No same letter between groups indicates a significant difference (P< 0.05). Error bars are SEM.
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Figure 2. Weight of excreta after 6 to 48 hours of tube-feeding with diets containing different levels of rice bran and hull.
* No same letter between groups indicates a significant difference (P< 0.05). Error bars are SEM.

Table 2: TiO; recovery (%) at 24 h, 36 h, and 48 h after tube-feeding

TiO; recovery rate (%)

Items! ah Bh 28h SEM P value
Corn 96.98 98.19 98.94 1.37 0.983
Sorghum 96.65 97.81 98.85 1.16 0.785
Wheat 97.48 98.63 99.31 1.13 0.776
Soybean meal 97.61 98.85 99.43 0.88 0.965
Rapeseed meal 96.12 98.10 99.05 1.32 0.758
Cottonseed meal 96.20 97.53 98.76 1.15 0.889
25% rice bran and hull 96.83 98.64 99.32 1.25 0.745
50% rice bran and hull 87.83° 97.242 98.61°2 1.08 0.032
75% rice bran and hull 82.37° 97.35° 98.67¢2 1.25 0.021
100% rice bran and hull 81.16° 96.97° 98.47¢ 1.05 0.019

All data were presented as mean values with SEM.

Discussion

The accurate determination of true metabolizable
energy (TME) relies on complete clearance of prior
feed residues and full collection of excreta (Hartel,
1986). Factors such as feed amount, bird age, fasting
duration, and gastrointestinal transit time can
markedly affect ME estimates (Wu et al., 2020). Adult
males are commonly used due to greater tolerance to
feed deprivation and tube-feeding; nevertheless,
inadequate feed allocation or improper fasting can lead

to under- or overestimation of ME (Farrell, 1999; Pesti

and Edwards, 1983; Wu et al., 2020).

In the present study,

18-week-old Magang

ganders were fasted for 36 h and tube-fed 80 g of the
test diet to standardize intake and minimize residual
gut contents. Excreta were collected every 6 h over 48
h. For cereal- and protein-based diets, excreta output
peaked within 24 h and remained stable thereafter,
indicating that a 24-h collection period is sufficient for
ME determination. These results are consistent with
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previous reports in geese fed corn and alfalfa (Shi et
al., 2009), complete corn diets (Lu et al., 2011),
mulberry leaf powder (Wang et al., 2017), moringa
stem powder (Zhai et al., 2020), DDGS (Wang et al.,
2018), and other unconventional feedstuffs (Zhang et
al., 2013). Conversely, high-fiber diets prolong
gastrointestinal transit. This aligns with findings in
broilers fed sunflower meal, where over 80% of
excreta was recovered within 36 h, with minimal
change at 48 h (Villamide and San Juan, 1998). Such
delays likely result from reduced interaction between
chyme and digestive enzymes (Jha and Berrocoso,
2015) and limitations in nutrient absorption (Jimenez-
Moreno et al., 2009). Interestingly, previous studies
reported an optimal 48-h transit in cecum-excised
geese (Wang et al., 2008; Yang et al., 2016), longer
than the 36 h observed here, likely reflecting the ceca’s
critical role in microbial fiber fermentation (He et al.,
2016), where its removal reduces fiber digestion and
prolongs transit. These findings demonstrate that
gastrointestinal transit and ME assessment are strongly
influenced by both feed composition and bird species,
highlighting the importance of adjusting excreta
collection periods according to diet type and avian
physiology.

Increased or decreased retention time of digesta
in the gastrointestinal tract is not solely regulated by
dietary fiber level, but also by its interaction with other
dietary nutrients and gastrointestinal physiological
activities (Miller et al., 2018). Specifically, soluble
and insoluble fiber fractions differ markedly in water-
holding capacity, bulking effect, and fermentability.
Soluble non-starch polysaccharides (NSPs) can
increase digesta viscosity, delay enzyme diffusion, and
thereby prolong retention time, whereas insoluble
fibers stimulate intestinal motility and accelerate
passage rate (Hetland et al., 2001; Jha and Berrocoso,
2015). Beyond fiber, protein composition, starch
digestibility, and fat inclusion also contribute to
differences in gastrointestinal transit. For instance,
undigested proteins may undergo microbial
fermentation in the hindgut, producing metabolites
that alter gut motility, while dietary fat has been shown
to slow gastric emptying and extend digesta retention
time (Gallier et al., 2014). Additionally, feed particle
size and processing (e.g., pelleting, grinding) influence
hydration, swelling, and breakdown of feed particles,
thereby affecting physical actions in the foregut
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