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This study integrates clustering and network analyses to identify 

performance-based groups and their connections to phenotypes, providing 

insights to optimize local chicken breeding programs in Cameroon. A total 

of 113 birds were grouped based on growth patterns between 16 and 22 

weeks, assessed using total weight gain (TWG) and leg circumference gain 

(LCG). Repeated measures and Welch ANOVA were used to test 

performance differences, while Generalized Least Squares (GLS) ANCOVA 

identified growth predictors. Although phenotypic diversity was observed, 

TWG and LCG did not differ significantly across phenotypes (P> 0.05), 

whereas final body weight (BW) and leg circumference (LC) at 22 weeks 

did (P<0.01). Cluster analysis identified four distinct performance cluster 

groups independent of phenotype, with significant divergence in 

performance. Birds in Clusters 3 and 4 consistently outperformed (P<0.001) 

their counterparts in the other Clusters 1 and 2, showing superior TWG and 

LCG while sexual dimorphism was in favour of males (P<0.05). Cluster 4 

exhibited the highest final BW, whereas Cluster 3 had the greatest total 

weight gain, indicating a distinct tendency for early and late-stage growth, 

which could be strategically optimized for selective crossbreeding to 

combine their complementary traits. Network analysis indicates historical 

gene flow and possible heterozygosity within the population, with Normal 

and Feathered shank phenotypes potentially serving as genetic bridges for 

performance traits, while the distinct peripheral positioning of Feathered leg 

and Naked neck, linked only to Clusters 1 and 2, suggests genetic 

distinctiveness. GLS-ANCOVA confirmed Cluster 3 and 4, as the most 

significant predictors of TWG (P<0.001), alongside sex (P<0.05) and LCG 

(P<0.05). Integrating cluster and network analysis can enhance sustainable 

breeding strategies in low-input systems, balancing growth efficiency with 

genetic diversity. Breeders and policymakers are encouraged to adopt 

systematic performance recording practices and promote cross-cluster 

crossbreeding within local flocks.  

 

Shey Ndogmi Yoniwo 

sheyyoniwo@gmail.com 

 

 

Article history 
Received: February 20, 2025 

Revised: May 08, 2025 

Accepted: July 11, 2025 

 

Introduction 

With the global increase in food prices, food 

insecurity remains a significant challenge, 

particularly in developing countries with limited 

resources. Poultry farming in these regions plays a 

pivotal role in supporting rural livelihoods, enhancing 

food security, and alleviating poverty, especially 

through the breeding of indigenous chicken stocks, 

which are a valuable resource for both meat and egg 

production (Besbes, 2009; Birhanu et al., 2023). In 

Cameroon, the poultry industry has experienced 

significant growth over the years, with current annual 

meat and egg production standing at 123,000 tonnes 

and 88,000 tonnes, respectively (FAOSTAT, 2022). 
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However, the industry's heavy reliance on imported 

stock poses a real threat to national sovereignty, 

especially during global pandemics characterized by 

trade and movement restrictions (GIZ, 2018; Rother 

et al., 2022). Consequently, valorizing indigenous 

genetic resources is seen as a better and more 

sustainable alternative for a resilient livestock sector 

(Mapiye et al., 2019; Hako and Yoniwo, 2023a). 

Cameroon local chicken represents a valuable 

genetic resource, renowned for its adaptability to 

local environmental conditions and resilience to 

diseases and climate stress, particularly in low-input 

farming systems (Hako Touko et al., 2021; Hako and 

Yoniwo, 2023b). This unique adaptability is 

underpinned by considerable genetic diversity, which 

constitutes an important reservoir for breeding and 

selection programs aimed at improving growth 

performance, egg production, and disease resistance 

(Keambou et al., 2015). The richness of the gene pool 

of Cameroon local chickens has been underscored 

through genetic studies (Fotsa et al., 2011; Hako 

Touko et al., 2015). Analysis of 25 microsatellite 

markers revealed a diverse genetic structure, 

harbouring tropical genes that can be harnessed for 

genetic improvement programs (Keambou et al., 

2014). Despite their adaptability, the local chickens 

often display slow and inconsistent growth 

performance, which is inherently influenced by their 

genetic makeup and phenotypic traits in combination 

with environmental and management factors 

(Kpomasse et al., 2023). Notably, there is a 

considerable level of genetic admixture and 

introgression within the population, which contributes 

to overlapping traits and variations in growth and 

productivity outcomes (González Ariza et al., 2021; 

Leroy et al., 2012). Phenotypic traits such as body 

weight, feed conversion ratio, average daily gain and 

other morphometric parameters, including shank 

length and circumference, have been reported to be 

greatly correlated with growth rate and productivity 

in chicken (Nosike et al., 2021; Miyumo et al., 2023). 

The use of genetic selection tools such as QTLs 

has significantly enhanced production efficiency in 

broiler chickens. For example, selecting for low 

residual feed intake (RFI) has improved feed 

conversion ratios and reduced waste (Li et al., 2020a; 

Zhang et al., 2021). However, the implementation of 

QTL-based selection is limited in many low-income 

contexts due to significant technical and economic 

constraints. Moreover, intensive trait-specific 

selection can also lead to a loss in genetic diversity, 

potentially reducing the overall resilience and 

adaptability of the population (Malomane et al., 

2021). 

In such settings with limited access to these 

advanced breeding tools, complementary phenomics-

based selection strategies like clustering offer cheap 

alternatives for grouping and selecting animals based 

on performance metrics such as growth outcomes. 

While previous studies have primarily used clustering 

to classify chicken breeds based on genetic markers 

(Rosenberg et al., 2001; Vakhrameev et al., 2023) or 

phenotypic characteristics (Kochish et al., 2023), this 

study innovates by applying performance-based 

clustering to identify growth-optimized subgroups 

within a single indigenous population. Rosario et al. 

(2008) in their study demonstrated that clustering 

analysis on performance and morphometric traits is 

effective for assessing phenotypic variability and can 

help identify key traits for breeding programs. They 

further concluded that body weight was the most 

important morphometric trait for clustering analysis 

in indigenous chicken populations. However, few 

studies have applied clustering analysis to group and 

select birds based on growth performance data in 

Africa, and fewer still have linked these clusters to 

phenotypes. Our study builds on such work by 

classifying Cameroon local chickens using 

hierarchical and K-means clustering of growth traits 

and visualizing cluster-phenotype relationships using 

network plots. Furthermore, unlike previous 

approaches, we also complement this by identifying 

significant predictors of weight gain using 

Generalised Least Squares Analysis of Covariance 

(ANCOVA). We hypothesize that performance-based 

clustering can identify biologically meaningful 

subgroups not apparent through phenotype alone, and 

these subgroups (clusters) interpreted through 

network analysis can inform more effective and 

sustainable selection practices. By employing this 

hybrid approach, we aim to assess growth variation, 

examine cluster-phenotype interactions, and provide 

practical selection recommendations to optimize meat 

production while supporting the sustainability and 

resilience of local poultry farming in Cameroon. 

 

Materials and methods 

The animal experiment was approved by the 

University of Dschang’s Department of Animal 

Sciences Ethics Committee (Ethics No: 

DZOO/CE/01322). The study was conducted at the 

Teaching and Research Farm of the University of 

Dschang, which is located between latitudes 5o and 7o 

North and longitudes 8o and 20o East in the Cameroon 

Western Highlands. A total of 177 day-old chicks 

were obtained by incubating eggs randomly collected 

from farmer households in the Western region of 

Cameroon. These were reared together under uniform 

conditions until 16 weeks of age, as part of a broader 

research initiative focused on the performance 

evaluation and selective breeding of local chickens 

for growth and egg production traits. For the current 

analysis, a subset of 113 birds was selected based on 

health status and the need to represent all phenotypes 

present in the population. 
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At week 16, the birds were phenotyped, sexed, 

tagged and housed in separate pens with slatted floors 

based on phenotype. Phenotyping was done by 

visually classifying chickens into different 

morphological categories, while tagging was done 

using leg bands. The five phenotypes under study 

were the Naked neck (4), Crested (7), Feathered leg 

(4), Feathered shank (4) and Normal feathered 

chickens (86), representing 3.5%, 6.2%, 3.5%, 10.6% 

and 76.2% of the sample size. These proportions 

reflect the natural occurrence of these phenotypes 

among the local chicken population in Africa as 

observed by Fotsa et al. (2010), Bembidé et al. 

(2013) and Dahloum et al. (2016). All birds were 

served the same commercial feed (Table 1), provided 

once a day, ensuring that each bird received at least 

80 g, which was deemed appropriate for local 

chickens aged 16 weeks and above (Yi et al., 2018). 

Water was always made available in drinking 

troughs.  

 

Table 1: Feed composition and calculated nutritional 

content 
Ingredient Unit Quantity 

Maize % 53.25 

Wheat bran % 24.25 

Soybean meal % 17.50 

Premix % 5.00 

Calculated nutritional composition 

Proteins % 18.17 

Energy kcal/kg 2638 

Fibers % 5.32 

Calcium % 0.32 

Phosphorus % 0.60 

Lysine % 0.91 

Methionine % 0.36 

 

Data Collection 

Body weight (BW) and leg circumference (LC) were 

measured weekly from 16 to 22 weeks using a Camry 

digital kitchen scale (5 kg capacity, 0.1 g precision) 

and a calliper (0.1 mm precision), respectively. To 

quantify growth performance, both weekly and total 

gains were computed. Weekly body weight gain 

(WWG) (equation 1) and weekly leg circumference 

gain (WLC) (equation 2) were calculated by 

subtracting the values of the previous week from the 

current week’s values, reflecting short-term 

increment in growth. Total weight gain (TWG) 

(equation 3) and total leg circumference (LCG) 

(equation 4) of the birds were equally computed to 

assess cumulative performance over the study period 

and served as the primary input for subsequent cluster 

and network analysis.  

WWG = BW Current week − BW Previous week  

(Equation 1) 
WLC = LC Current week − LC Previous week  (Equation 2) 

TWG = BW 22 weeks − BW 16 weeks  (Equation 3) 

LCG = LC 22 weeks − LC 16 weeks  (Equation 4) 

 

Statistical analysis  

A hybrid clustering approach was employed to 

classify chickens based on total weight gain (TWG) 

and total leg circumference gain (LCG) from 16 to 22 

weeks (Galdino and da Silva, 2024). First, 

hierarchical cluster analysis (HCA) using Ward’s 

method was applied to explore the overall data 

structure and guide the choice of cluster number 

(Murtagh & Legendre, 2014). This was followed by 

K-means clustering, which finalized group 

assignments based on proximity to cluster centroids 

(Vakhrameev et al., 2023). The combination of these 

two approaches, which are commonly used in 

exploratory biological studies, balances the visual 

interpretability of HCA while leveraging the 

partitioning efficiency of K-means (Galdino and da 

Silva, 2024). Although K-means alone is suitable for 

larger datasets, HCA was used here as an exploratory 

step to assess natural groupings and inform cluster 

selection. The optimal number of clusters was 

determined and confirmed using the Elbow Method 

and Silhouette Analysis (Zhao et al., 2018; Humaira 

& Rasyidah, 2020). The Elbow Method examines the 

point at which the reduction in within-cluster sum of 

squares begins to level off, indicated by the “elbow” 

point (Syakur et al., 2018), while the Silhouette score, 

which ranges from -1 to 1, assesses how well each 

point fits within its cluster (Ezugwu et al., 2022). The 

following equation (5) represents the objective 

function for optimizing K-means clustering, by 

minimizing the total within-cluster variance (Ikotun 

et al., 2023). 

𝐽𝑐𝑘 = ∑ ∑ ∥ 𝑥 − 𝜇i ∥2

𝑥𝜖𝐶𝑖

𝐾

𝑖=1

  (Equation 5) 

Where: K = The number of clusters; 𝐶𝑖 = The set of 

points in the ith cluster; x = A data point; 𝜇i = The 

centroid of the ith cluster (mean of all points in 𝐶𝑖); 

∥ 𝑥 − 𝜇i ∥2= The squared Euclidean distance between 

the data point x and the cluster centroid 𝜇i. 

Additionally, network analysis was conducted to 

explore relationships between clusters and 

phenotypes. This helped to visualize shared 

performance traits and possible overlap among 

groups, offering insight into potential genetic 

connections or historical crossbreeding patterns. In 

this network bipartite graph, the nodes represent 

phenotypes and clusters, while edges indicate their 

connections (Zhang et al., 2014). The network was 

analyzed using degree centrality, which quantifies 

how connected each phenotype is across multiple 

clusters, offering insights into performance 

distribution (Venturini et al., 2021). The clarity of 

visual representation was enhanced by applying a 

spring layout algorithm to optimize node positioning, 

and highlight the interconnections (Bendahman & 

Lotfi, 2024). 
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To assess whether growth and leg circumference 

changed significantly over time, a repeated measures 

ANOVA was conducted. Prior to analysis, the 

Shapiro-Wilk normality test (Shapiro & Wilk, 1965) 

confirmed that the residuals followed a normal 

distribution (W = 0.9881, p-value = 0.4292). 

However, given the unequal sample sizes across 

phenotypes, Welch’s ANOVA was used to compare 

total weight gain (TWG) and total leg circumference 

gain (LCG) across phenotypes, clusters, and sex. 

Unlike traditional ANOVA, this method is robust to 

violations of variance homogeneity and adjusts 

degrees of freedom using the Welch-Satterthwaite 

equation (Delacre et al., 2017; Celik, 2020). Post hoc 

pairwise comparisons were performed using Games-

Howell tests, which account for unequal variances 

and sample sizes without assuming pooled variance 

(Games & Howell, 1976). The choice of Welch 

ANOVA and Games-Howell tests was based on the 

clear imbalance in group sizes and the inherent 

biological variability expected in field data from 

indigenous chicken populations, which may trigger 

variance heterogeneity in performance data. A 

generalized Welch ANOVA model is specified as 

follows (Equation 6). 

𝑌𝑖𝑗𝑘 = 𝜇 + (𝐴)𝑖
1 + 𝐵𝑗 + (𝐶)𝑘

2 + (𝐴𝐵)𝑖𝑗
∗ + 𝑒𝑖𝑗𝑘  

(Equation 6) 

Where: 𝑌𝑖𝑗𝑘  = TWG or LCG for the kth individual in 

the ith Cluster and jth sex group; μ = Overall mean; 

(𝐴)𝑖
1 = Fixed effect cluster (i varying from 1 to 4); 𝐵𝑗  

= Fixed effect of sex (j varying from 1 to 2); (𝐶)𝑘
2 = 

Fixed effect of phenotype (k varying from 1 to 5); 

(𝐴𝐵)𝑖𝑗𝑘
∗
 = Interaction effect between sex and cluster 

(applies only in cluster-based comparisons); 𝑒𝑖𝑗𝑘  = 

Residual error term: 𝑒𝑖𝑗𝑘  ~  𝑁(0, 𝜎𝑖𝑗𝑘) , where 𝜎𝑖𝑗𝑘 

represents within-group-specific variance that differs 

across levels of sex, cluster and or phenotype.  

Superscripts 1 and 2 indicate that the respective 

terms are only included in models testing cluster-

based and phenotype-based comparisons, 

respectively. Interaction involving phenotype and sex 

was not tested in phenotype-based models due to a 

considerable imbalance in sex distribution across 

phenotypes. For instance, the Naked neck group (4) 

had just one cock and 3 hens. This skewed 

distribution limited the ability to draw statistically 

meaningful conclusions from sex-phenotype 

interactions. 

Generalized least squares (GLS) analysis of 

covariance (ANCOVA) was used to assess the 

determinants of growth in chicken with TWG as the 

response variable. The experimental design consisted 

of a one-factor fixed-effects model with cluster, sex, 

and phenotype treated as fixed factors, and leg 

circumference gain (LCG) included as a covariate to 

adjust for variation in structural growth. The model 

accounted for heteroscedasticity across groups by 

applying variance weighting to estimate a separate 

variance component for each group, as indicated by 

Pinheiro & Bates (2000). Interaction terms between 

cluster and sex were also included to assess sex-

specific performance patterns. GLS-ANCOVA was 

favoured over standard ANCOVA due to its 

flexibility in handling unequal group variances, and it 

yielded a slightly better fit (AIC = 1270.56 vs. 

1325.49). The AIC is a common metric for model 

comparison in biological studies, where a lower AIC 

value indicates a better fit to the data (Portet, 2020; 

Sutherland et al., 2023). While the absolute AIC 

difference (~4%) is modest and not definitive on its 

own, the choice of GLS was also guided by the 

known variance heterogeneity in the dataset. We 

therefore interpret this improvement cautiously, 

acknowledging that it complements, but does not 

solely justify, the use of GLS in this context. The 

GLS ANCOVA model was specified as shown in 

equation (7). 
𝐵𝑊𝐺𝑖𝑗𝑘 = 𝜇 + 𝐶𝑖 + 𝑆𝑗 + 𝑃𝑘 + (𝛽. 𝐿𝐶𝐺𝑖𝑗𝑘) + 𝜎𝑘  . 𝑒𝑖𝑗𝑘 

(Equation 7) 

Where: 𝐵𝑊𝐺𝑖𝑗𝑘 = Observed total weight gain for the 

kth individual in the ith Cluster and jth Phenotype.; μ = 

Overall mean; 𝐶𝑖  = Fixed effect cluster (i varying 

from 1 to 4); 𝑆𝑗 = Fixed effect of sex (j varying from 

1 to 2); 𝑃𝑘  = Fixed effect of phenotype (k varying 

from 1 to 5); 𝛽. 𝐿𝐶𝐺𝑖𝑗𝑘
∗
 = LCG (leg circumference 

gain) as covariate, where 𝛽  is the regression 

coefficient; 𝜎𝑘 = Variance component specific to each 

phenotype group; 𝑒𝑖𝑗𝑘  = Random error or residual 

effect for the kth individual. 

Finally, Pearson correlation was used to assess the 

relationship between the leg circumference and body 

weight of the studied chickens. Descriptive summary 

statistics and repeated measures ANOVA was 

performed with JASP 0.19.3 software (JASP Team, 

2024), while Python (colab.research.google.com) was 

used to perform both clustering and network analysis, 

Pearson correlation and to generate graphical output 

of growth trends. Finally, R Studio 4.2.2 (R Core 

Team, 2022) was employed for Welch-ANOVA and 

GLS-ANCOVA modelling.  

 

Results  

Growth performance of local chicken phenotypes 

Figure 1 illustrates the weekly evolution and 

cumulative gains in body weight and leg 

circumference for the studied Cameroon local 

chicken phenotypes, providing a detailed comparison 

of growth patterns.  
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Figure 1. Weekly evolution in body weight (A) and leg circumference (B), and body weight gain (C) and leg 

circumference gain (D) from 16 to 22 weeks in Cameroon local chickens. Line plots show weekly means.  

 

 

Repeated measures ANOVA p-values are 

reported; different letters indicate significant pairwise 

differences based on Games-Howell tests. 

The results of repeated-means ANOVA revealed 

significant differences in the phenotype’s growth rate 

(P< 0.01) and leg circumference (P<0.01). All 

phenotypes displayed a steady increase in body 

weight, but with distinct growth rates (Figure 1A). 

The feathered leg chickens, for instance, exhibited the 

highest growth, reaching 1689.9 g by 22 weeks, 

followed by the feathered shanks (1182.2 g), crested 

(1097.3 g) and normal (1085.6 g) chickens. The 

naked neck chicken had the lowest final weight 

(924.6 g), but was not statistically different from the 

crested, normal and feathered shank chickens. 

Similarly to the body weight, the feathered leg 

chickens exhibited the largest leg circumference (14.2 

mm) by 22 weeks, followed by the feathered shanks 

(11.2 mm), normal (10.1 mm) and crested (9.7 mm) 

chickens (Figure 1B). The naked neck chicken 

equally had the smallest final leg circumference (9.6 

mm). However, this was not statistically different 

from the feathered shanks, naked neck, crested and 

normal chickens. The cumulative gains in live weight 

(Figure 1C) as well as the cumulative gains in leg 

circumference (Figure 1D) mirror the evolution 

trends as the feathered leg and feathered shank 

chickens consistently outperform the other 

phenotypes between 16 and 22 weeks.  

The total weight gain (TWG) and overall leg 

growth (LCG) across phenotypes as well as sexes at 

the end of the 22 weeks are presented in Figure 2. 

Welch’s ANOVA showed a non-significant 

difference in the TWG (P> 0.05) and LCG (P> 0.05). 

However, the feathered shank chickens showed a 

superior mean TWG (455.7 g) followed by the 

feathered shank chickens (384.6 g). Conversely, the 

naked neck chickens recorded the least average total 

weight gain (263.0 g) (Figure 2A). Likewise, the 

feathered leg (4.9 mm) and feathered shank (3.5 mm) 

chickens equally had slightly higher overall leg 

growth (LCG) compared to the other phenotypes 

(Figure 2C). Similarly, the naked neck (2.4 mm) and 

crested chickens (2.0 mm) also had the least TWG.  

In contrast to phenotypes, differences in TWG 

and LCG by sex were statistically significant (P< 

0.001), with cocks (♂) achieving a higher overall 

weight gain of 378.9 g (Figure 2B) and leg 

circumference growth of 3.3 mm compared to 282.6 g 

and 2.1 mm respectively in the hens (♀) (Figure 2D).  

 

(A) (C) 

(B) (D) 
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Figure 2. Total weight gain (TWG) by phenotype (A) and sex (B), and leg circumference gain (LCG) by 

phenotype (C) and sex (D). Boxplots show medians and interquartile ranges. Welch’s ANOVA p-values are 

reported; different letters denote significant pairwise differences based on Games-Howell post hoc tests. 

 

 
 

Figure 3. Determination of the optimal number of clusters using the Elbow method and Silhouette score (SS). 

The plot shows the reduction in within-cluster distance as the number of clusters increases from 1 to 10. The 

inflection points (elbow) suggest the optimal cluster number. Four clusters were selected based on a balance 

between interpretability and performance, despite the highest SS being observed at two clusters. 

 

 

(A (B

(C (D

Chosen clusters 

SS = 0.55 

 

Optimal clusters – “Elbow” 

SS = 0.60 
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Cluster and network analysis 

Although the two-cluster solution had the highest 

average silhouette score (0.60), we opted for a four-

cluster configuration (score = 0.55) to better capture 

subtle but meaningful biological variations in growth 

performance. The two-cluster grouping was 

statistically compact but too coarse, and obscured 

important growth distinctions. Contrastingly, the 

four-cluster solution allowed us to detect meaningful 

differences in performance, particularly between 

Clusters 3 and 4 and Clusters 1 and 2, thus offering a 

more practical basis for selection. This decision 

balanced statistical fit with biological relevance and 

aligned with exploratory clustering practices in 

livestock studies (Palarea‐Albaladejo & 

McKendrick, 2020). Moreover, the very slight 

difference of 0.05 in the Silhouette score highlights 

the fact that the four-cluster solution remains 

reasonably well separated and meaningful for 

subsequent analysis. 

The dendrogram of performance clusters obtained 

from agglomerative hierarchical clustering of the total 

weight gain and leg circumference gain data points 

using Ward's linkage method is illustrated in Figure 

4. 

 

 
 

Figure 4. Hierarchical clustering dendrogram showing four performance clusters (C1–C4) derived from total 

weight gain (TWG) and leg circumference gain (LCG). Ward’s method with Euclidean distance was applied. 

Vertical distances reflect dissimilarity between clusters. BCV and WCV represent the calculated between-cluster 

variance and within-cluster variance. 

 

It is observed that Cluster 3 (C3) and Cluster 4 

(C4) merge at approximately 8, indicating a moderate 

level of similarity between these two clusters. On the 

other hand, Clusters 1 (C1) and Cluster 2 (C2) merge 

at a shorter distance of around 6, suggesting a higher 

degree of similarity between them compared to C3 

and C4. Ultimately, all four clusters (C1, C2, C3, and 

C4) merge at a greater distance of approximately 14, 

signifying the point at which all data points are 

grouped into a single cluster. The analysis reveals 

that the between-cluster variance (BCV) accounts for 

56.04% of the total variance, highlighting the distinct 

differences between the clusters. Meanwhile, the 

within-cluster variance (WCV) is 43.96%, reflecting 

the variability within each cluster. 

The PCA plot (Figure 4A) illustrates the 

distribution of the different phenotypes based on the 

first two principal components, which capture most of 

the variance in the data. The normal, crested, and 

naked neck chickens appear to cluster more centrally, 

although some normal feathered chickens are equally 

scattered widely across the plot. This indicates a 

diverse range of phenotypic expressions within the 

normal category. However, the feathered shank and 

feathered leg chickens are more peripheral, 

suggesting they could be more distinct. The K-means 

plot (Figure 4B) shows the aggregation of the four 

performance clusters on the PCA space mapped by 

cluster markers. Overall, clusters appear to be 

comprised of different phenotypes. For instance, the 

normal feathered chickens appear to be found in all 

clusters, whereas feathered leg chickens are distinctly 

located in either Cluster 3 or Cluster 4. Also, the 

Crested and naked neck chickens seem to be more 

concentrated in cluster 1 and cluster 2. 

C4 C3 C1 C2 

BCV = 0.5604 

WCV = 0.4396 
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Figure 5. Principal component analysis (PCA) biplots. (A) Distribution of birds by phenotype across the first 

two principal components. (B) K-means cluster assignments overlaid on PCA-reduced space, with ellipses 

indicating cluster dispersion. The plot illustrates how performance-based clusters partially overlap with 

phenotypic classifications, reflecting both convergence and divergence in growth traits 

 

Additionally, Cluster 3 and Cluster 4 consist of 

more dispersed chickens along the horizontal axis 

(PC1), suggesting greater variability in the principal 

component 1 dimension. In contrast, Cluster 1 and 

Cluster 2 seem to be closer to the origin of the plot 

and are more distinct from each other, indicating less 

variability in PC1 but potentially more in PC2. 

A simplified visualization of the association 

between performance clusters and local chickens 

phenotypes is presented on the bipartite network plot 

(Figure 6). Results confirm that the feathered legs 

phenotype is peripherally located while the normal 

feathered chickens is centrally located, as previously 

identified by the K-means cluster results (Figure 4). 

Additionally, Clusters 3 and 4 are more associated 

with distinct phenotypes, including feathered legs and 

feathered shanks, while crested, normal and naked 

necks are more represented across Clusters 1 and 2. 

However, the normal chickens and feathered chickens 

are also connected to all four clusters, equally 

confirming the K-means clustering results.  

 

 

(A) (B) 
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Figure 6. Bipartite network plot showing associations between phenotypes and performance-based clusters. 

Node colour indicates category (red = phenotype, blue = cluster), and edge thickness reflects the frequency of 

phenotype occurrence within each cluster. The central position of Normal and Feathered Shank phenotypes 

suggests a broad distribution across clusters. 

Growth performance of local chickens clusters 

Results on the weekly trend and the cumulative gains 

in body weight (BW) and leg circumference (LC) 

between weeks 16 and 22 for the performance 

clusters are presented in Figure 7. 

 

 
Figure 7. Weekly evolution in body weight (A) and leg circumference (B), and body weight gain (C) and leg 

circumference gain (D) from 16 to 22 weeks in local chickens clusters. Line plots show weekly means. Repeated 

measures ANOVA p-values are reported; different letters indicate significant pairwise differences based on 

Games-Howell tests. 

 

There was a very significant difference in the 

growth profile (P<0.001) and leg circumference (P< 

0.001) of the different groups. A general trend can be 

observed across clusters showing a steady increase in 

body weight (Figure 7A) and leg circumference 

(Figure 7C), but at varying rates. Cluster 3 and 

Cluster 4 recorded the highest live weights (1381.9 g 

and 1336.4 g, respectively) by 22 weeks. Conversely, 

Cluster 1 and Cluster 2 chickens showed the lowest 

but distinct evolution in body weight, with a final 

weight of 1061.3 g and 954.7 g, respectively, by 22 

weeks. Similarly, the largest leg circumference by 22 

weeks was observed for Clusters 4 (14.2 mm) and 3 

(10.6 mm) while Clusters 1 and 2 had the smallest leg 

circumferences (10.6 mm and 8.7 mm). The 

cumulative weekly gains in body weight (Figure 7B) 

and leg circumference (Figure 7D) equally mirror the 

evolution trends as local chickens in Clusters 3 

followed by Cluster 4 consistently gained more 

weight than their counterparts in Clusters 2 and 1. 

Welch ANOVA revealed significant differences 

in TWG (P<0.001) and LCG (P<0.001) for 

performance clusters with chickens Cluster 3 and 

Cluster 4, respectively, gaining an average of 478.9 g 

and 413.2 g in live weight between 16 and 22 weeks 

(Table 2). The least cumulative gains were recorded 

for Clusters 1 (284.5 g) and lastly Cluster 2 (258.8 g). 

However, subjects in Cluster 4 (6.4 mm) had superior 

overall leg growth, followed by those in Cluster 1 

(3.0 mm) and Cluster 3 (2.7 mm). Chickens in Cluster 

2 had the lowest (P<0.001) mean LCG (1.07 mm) 

compared to the subjects in other clusters. 

Although there was no significant difference (p > 

0.05) in the TWG and LCG across sexes within each 

cluster group, results show that overall, cocks (♂) 

outperform the hens (♀) both in terms of TWG and 

(A) (B) 

(C) (D) 
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LCG. However, ANOVA revealed a significant 

interaction effect (P<0.001) between sex and clusters 

(S*C), indicating that the impact of sex on performance 

is not independent of the cluster grouping.  

To assess the relationship between the increase in 

leg circumference and the gain in body weight, a 

correlation analysis was performed by plotting TWG 

against LCG, as shown in Figure 8. The results 

revealed a statistically significant (P< 0.001) positive 

correlation between TWG and LCG. However, the 

relatively weak correlation coefficient (r = 0.31) 

suggests that the association is not very strong. 

 

Table 2: Summary statistics of total weight (TWG) and leg circumference (LCG) gain of local chickens by 

cluster and sex from 16 to 22 weeks 

Variable Cluster Sex      N   Mean   SD    CV p - C p - S*C 

TWG 

Cluster 2a 

Hen (♀)a 30 246.6a 93.3 0.38 

<0.001 <0.001 

Cock (♂)a 12 271.1ab 95.8 0.35 

Subtotal C2 42 258.8 94.5 0.38 

Cluster 1a 

Hen (♀)a 19 272.5ab 51.3 0.19 

Cock (♂)a 17 296.4ab 57.4 0.19 

Subtotal C1 36 284.5 54.3 0.19 

Cluster 4b 

Hen (♀)a 4 389.9abc 85.0 0.22 

Cock (♂)a 10 436.5bc 137.7 0.32 

Subtotal C4 14 413.2 111.3 0.27 

Cluster 3b 

Hen (♀)a 5 453.0c 33.9 0.08 

Cock (♂)a 16 504.8c 86.7 0.17 

Subtotal C3 21 478.9 60.3 0.13 

LCG 

Cluster 2a 

Hen (♀)a 30 1.0b 0.6 0.62 

<0.001 <0.001 

Cock (♂)a 12 1.4b 0.7 0.48 

Subtotal C2 42 1.2 0.6 0.55 

Cluster 1b 

Hen (♀)a 19 2.9a 0.6 0.21 

Cock (♂)a 17 3.1a 1.1 0.35 

Subtotal C1 36 3.0 0.8 0.19 

Cluster 4c 

Hen (♀)a 4 6.1c 0.7 0.11 

Cock (♂)a 10 6.6c 1.0 0.16 

Subtotal C4 14 6.4 0.9 0.14 

Cluster 3d 

Hen (♀)a 5 2.5ab 1.4 0.54 

Cock (♂)a 16 2.8a 1.3 0.46 

Subtotal C3 21 2.7 1.3 0.50 

Note. N (frequency), SD (standard deviation), CV (coefficient of variation), p (p-value for Welch ANOVA, 

not assuming equal variance), C (Cluster), S*C (Interaction). 
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Figure 8. Scatter plot showing the relationship between body weight gain (TWG, g) on the x-axis and leg 

circumference gain (LCG, mm) on the y-axis in Cameroon local chickens. The red line represents the line of best 

fit with a 95% confidence interval shaded in pink. Pearson correlation coefficient (r) and p-value are displayed in 

the top-left corner. 

 

Factors influencing growth  

A general least squares analysis of covariance was 

performed to understand the factors influencing 

growth performance in local chickens. Total weight 

gain (TWG) was used as the dependent variable, leg 

circumference gain (LCG) as the covariate, and 

phenotype, cluster and sex were included as factors 

(Table 3). 

 

Table 3: GLS-ANCOVA results for factors influencing overall weight gain 

Variable Value SE t-value p-value 

Cluster 

   Cluster 2 -52.92 26.03 -2.03 0.045* 

   Cluster 3 192.37 24.33 7.91 < 0.001*** 

   Cluster 4 192.50 43.48 4.43 < 0.001*** 

Sex 

   Cock 42.03 18.23 2.31 0.023* 

Phenotype 

   Feathered legs 19.29 65.64 0.29 0.769 

   Feathered shanks -0.31 44.58 -0.01 0.994 

   Naked neck -0.59 41.59 -0.01 0.989 

   Normal -10.31 36.66 -0.28 0.779 

Leg circumference gain -19.14 9.37 -2.04 0.044* 

Model parameters 

   Intercept 326.36 45.87 7.12 < 0.001*** 

   Model Nagelkerke R2 0.11 

      Model AIC 1270.56 

      ANCOVA AIC 1325.49       

SE, standard error; R2, coefficient of determination. ***,** and * significant at P<0.001, P<0.01 and P<0.001, 

respectively.1 

 

Cluster groups significantly affected weight gain, 

with Cluster 3 (P<0.001) and Cluster 4 (P<0.001) 

each gaining approximately 192 g more than the 

Cluster 1 chickens between weeks 16 and 22. 

Contrastingly, Cluster 2 chickens significantly 

(P<0.05) gained 52.9 g less than Cluster 1 chickens 

during the same period. Sex is also a significant 

(P<0.05) predictor of growth performance in adult 

local chickens with cocks gaining 42 g more than 

hens. Further, gain in leg circumference (LCG) has a 

small but significant negative effect (P<0.05*, -19.2) 

on weight gain, indicating there is 19.2 g less in body 

weight per mm gain in leg circumference. 

Conversely, phenotype is not an important (P> 0.05) 

indicator of growth performance in adult local 

chickens. Nonetheless, Feathered legs chickens 

gained slightly more (approximately 19.3 g and 29.7 

g) body weight compared to the crested and normal 

feathered counterparts when corrected for growth in 

leg circumference (LCG).   

 

Discussion 

Cameroon local chickens display substantial genetic 

diversity as evidenced by the variety of phenotypes 

observed post-incubation. The underrepresentation of 

Naked Neck, Crested, and Feathered Legs/Shanks 

phenotypes in our sample aligns with known patterns 

of low frequency for Na/, Pti/, and Cr/_ adaptive 

genes across African indigenous chickens (Nigussie 

et al., 2010; Dahloum et al., 2016; Kindie & Tamiru, 

2021). However, we observe a slightly higher 

occurrence of chickens with leg feathering (14.1%) 

compared to earlier studies by Fotsa et al. (2010). 

This change could be motivated by the perception 

that feathered leg chickens grow faster than local 

chickens but retain the latter’s desirable organoleptic 

qualities, which are highly valued by consumers 

(Castellini et al., 2008). 

Observed differences in body weight and leg 

circumference across phenotypes may reflect 

complex interactions between genetic makeup, sex, 

and other subtle micro-environmental factors such as 

in-pen competition for feed. The consistently higher 

growth performance in males supports well-

documented patterns of sexual dimorphism in poultry 

(Bembidé et al., 2013; Halima et al., 2007), which is 

often attributed to hormonal and physiological 

factors, such as higher circulating levels of 

testosterone in males, which promote muscle growth 

and protein synthesis (Osei-Amponsah et al., 2011). 

Furthermore, males generally exhibit more efficient 

feed conversion and greater appetite compared to 
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females, contributing to faster weight gain (Fotsa et 

al., 2011; Mustofa et al., 2021). The presence of sex-

linked growth genes and differential energy allocation 

strategies may also play a role in shaping these 

observed differences. The leg circumference values 

observed suggest a modest skeletal development 

relative to heavier indigenous breeds. When 

contextualized against similar studies from Central 

Africa (Bembidé et al., 2013), Algeria (Dahloum et 

al., 2016), and Nigeria (Adeleke et al., 2010), the 

performance of Cameroon local chickens appears 

intermediate, which underscores the need for targeted 

selection if productivity is to be improved. 

The superior growth profile of feathered leg/shank 

chickens was demonstrated between 16 and 22 

weeks, corroborating the findings of Keambou et al. 

(2013) and Bembidé et al. (2013). This may point to a 

potential genetic predisposition for superior growth in 

this phenotype. Yang et al. (2019) highlight the 

association between phenotypic traits like leg 

feathering and important economic traits like growth 

rate. Candidate genes like the forelimb (PITX1) and 

hindlimb (TBX5), specific transcription factors have 

been identified to influence skeletal development and 

growth performance in domestic chickens; however, 

the mechanism remains poorly understood (Li et al., 

2020b). It could be that the feathered leg phenotype 

may instead present a marker of polygenetic traits 

associated with muscle development and hormonal 

regulation rather than a single candidate gene. 

Meanwhile, the least evolution for the Naked Neck 

chickens supports previous findings that associate 

their thermoregulatory efficiency with adaptation to 

harsh environments rather than growth performance 

(Hako & Yoniwo, 2023a, 2023b). Furthermore, the 

lack of significant differences (P>0.05) in TWG and 

LCG across phenotypes may be attributed to several 

factors. First, this could be due to underlying genetic 

admixture and shared ancestry among local chickens 

populations, where visible traits do not necessarily 

reflect differences in growth-related genes (Ren et al., 

2023). Secondly, morphological features like crests or 

feather patterns are often controlled by major genes 

(Na, Pti, Cr, Fr) which are not directly related to the 

polygenic traits governing growth in chickens 

(Tixier-Boichard, 2002). Additionally, the small 

sample sizes for rare phenotypes (Feathered leg, 

Crested and Naked neck), uniform experimental 

conditions that limit genotype-by-environment 

interactions, and the potential compensatory growth 

effect during the later stages may have minimized 

observable performance differences. Moreover, the 

uneven sex distribution within each phenotype, 

despite sex being a well-known growth determinant 

(Nguyen Van et al., 2020), may have further 

confounded these comparisons. These findings 

highlight the fact that phenotype alone may not be a 

very reliable predictor of growth performance in 

chickens, and alternative performance-based selection 

methods can be more effective. 

 

Cluster and Network Analysis  

Our results confirm that clustering based on 

performance traits can identify biologically relevant 

subgroups that phenotype-based classification may 

overlook. However, as Vakhrameev et al. (2023) 

demonstrated in their work on divergently selected 

global chickens breeds, clustering outcomes are 

highly sensitive to methodological choices, including 

clustering algorithms, trait combinations, and levels 

of genetic admixture. Their proposed EY/W indicator 

and trait-based sorting by inflection points emphasize 

the importance of carefully selecting input variables 

and understanding trait interactions. While our study 

focused on growth-related traits (TWG and LCG), the 

implications of their work suggest that integrating 

broader phenotypic or genomic indicators could 

further refine performance-based classification in 

local chickens populations. Rosario et al. (2008) 

identified three initial clusters based on body weight, 

while we revealed two clusters using Silhouette 

analysis before refining to four for greater biological 

interpretability. The difference in clustering outcomes 

could be attributed to factors such as the age of birds 

analyzed and the choice of linkage methods. Rosario 

et al. employed Mahalanobis distance, while our 

study used Ward’s method with Euclidean distance. 

These methodological differences underscore how the 

structure of clustering results may vary based on 

design choices, dataset properties, and the stage of 

growth under investigation (Palarea‐Albaladejo & 

McKendrick ,2020)   

With the modified four-cluster solution, Clusters 3 

and 4 consistently demonstrate superior outcomes. 

The similarity observed between these two clusters 

and their clear distinction from Clusters 1 and 2 

suggests a potential concentration of favourable 

growth traits within certain groups, possibly 

reflecting underlying genetic patterns. This 

divergence is particularly meaningful because it 

emerged independently of phenotypic classification, 

reinforcing the value of data-driven clustering. The 

consistently better performance in Clusters 3 and 4 

may reflect a more efficient resource utilization, 

better adaptation to the semi-intensive and intensive 

system, or an inherited advantage linked to 

unidentified genetic factors. Sexual dimorphism was 

also in favour of cocks under performance-based 

groupings who demonstrated superior TWG and LCG 

irrespective of phenotypes. These results further 

support the practical application of performance-

based grouping for improving productivity in local 

poultry breeding programs, especially where 

molecular tools are unavailable (Rosario et al. 2008). 

Furthermore, these findings unlock valuable 

information for local poultry breeding programs in 
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Cameroon, with potential complementary effects on 

growth. For instance, while Cluster 4 expressed the 

highest live weight by 22 weeks, Cluster 3 

demonstrated the highest TWG between 16 and 22 

weeks. This may be due to the better early growth for 

birds in Cluster 4 and the best late growth for subjects 

in Cluster 3. This distinct performance dynamics 

observed where one excels in early growth and the 

other in sustained weight gain could be optimized by 

selective crossbreeding to combine these 

complementary traits. Such an approach could 

produce offspring (F1) that achieve faster initial 

growth while maintaining high cumulative gains, 

which is desirable for meat production. Meanwhile, 

the clear divergence between Clusters 1 and 2 opens 

the possibility of divergent selection pathways, where 

one group may be optimized for growth and the other 

for traits like egg production or resilience in low-

input systems. The significant difference in leg 

circumference among sexes and clusters reinforces 

the ranking of cluster performance, and their 

alignment with body weight trends supports their use 

as a secondary selection trait in this study. The above 

patterns demonstrate that cluster-based selection can 

reveal biologically meaningful subgroups, enabling 

targeted selection without relying on phenotypic 

appearance alone. Importantly, this strategy offers the 

advantage of enhancing the likelihood of preserving 

within-population genetic diversity by avoiding 

uniform selection pressure on single traits or 

phenotypes. 

Network analysis provides additional insights into 

the relationship between phenotypes and 

performance-based clusters. Rather than clustering by 

strict physical appearance, phenotypes were 

distributed across multiple clusters, pointing to 

possible genetic exchange between groups from 

historical crossbreeding. Genetic admixture is very 

common among indigenous chicken populations 

reared under extensive poultry systems, as indicated 

by Keambou et al. (2014). Studies by Leroy et al. 

(2012) and Bembidé et al. (2024) have reported high 

genetic diversity and heterozygosity levels exceeding 

45% in scavenging chicken populations across 

Cameroon and the Central African Republic, as 

determined using microsatellite markers. The Normal 

and Feathered shank chicken were centrally 

distributed across all four clusters. This centrality 

indicates these phenotypes may serve as genetic 

bridges across cluster groups, facilitating the spread 

of advantageous traits through natural and planned 

crossbreeding.  Furthermore, their consistent presence 

in Clusters 3 and 4 highlights their potential 

usefulness in developing breeding lines focused on 

growth optimization. From a breeding strategy 

perspective, this means that selection decisions 

informed by network analysis can help maintain 

broad genetic diversity while strategically combining 

high-growth potential from different phenotype 

groups. On the other hand, peripheral phenotypes like 

Naked Neck and Feathered Legs, which appeared in 

fewer clusters, particularly Clusters 1 and 2, may 

possess niche traits such as fast growth rate, disease 

resistance or adaptation to specific ecological zones 

that are also valuable depending on breeding goals. 

This peripheral placement may be due their small 

sample sizes in the current study, but could also point 

to limited gene flow or historical underutilization by 

breeders, which makes them good reservoirs for 

potentially unique alleles for resilience and 

adaptability. Other studies have confirmed high intra- 

and inter-breed gene flow, contributing to the 

adaptability and heterozygosity observed in 

scavenging populations (Ren et al., 2023). By 

integrating cluster-based analysis and network 

structure, breeding programs can prioritize fast-

growing birds while also preserving genetic diversity. 

This framework supports sustainable breeding by 

promoting both productivity and conservation of 

genetic resources, especially in contexts where formal 

pedigree or genomic data may be lacking. In practical 

terms, this dual approach empowers breeders to 

design crossing schemes that balance growth 

efficiency with genetic stability, thereby ensuring that 

selection does not lead to narrow genetic pools or 

unintended loss of traits essential for survival in low-

input systems.  

 

Factors Influencing Growth 

GLS ANCOVA assessed the influence of cluster 

grouping, sex, phenotype and leg circumference gain 

(LCG) on total weight gain (TWG). The model 

reveals a low R² value (0.112) yet captures 

statistically significant effects, which means that 

although it captures meaningful patterns, a large 

portion of variability remains unexplained, possibly 

due to unmeasured biological or environmental 

factors. Notably, phenotype did not significantly 

influence TWG, suggesting that external morphology 

alone is not a reliable proxy for growth performance 

in adult local chickens. Feathered leg birds showed a 

marginal advantage, gaining approximately 19.3 g 

more than Crested and Normal birds, though this 

difference was not statistically conclusive and 

warrants further investigation. Clusters 3 and 4 were 

the strongest predictors of higher TWG, with birds in 

these birds in clusters gaining over 190 g more than 

Cluster 1 (P<0.001). In contrast, Cluster 2 birds 

gained about 52.9 g less than those in Cluster 1, 

reinforcing divergent growth potential across 

performance-based groups. Sex was also a significant 

factor, with cocks gaining an average of 42 g more 

than hens, consistent with established sexual 

dimorphism in poultry growth (Keambou et al., 2013; 

Nguyen Van et al., 2020). 
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Although Pearson correlation revealed a weak but 

significant positive relationship between LCG and 

TWG (r = 0.31, P< 0.001), the GLS model showed a 

small but significant negative effect of LCG on 

TWG. This suggests a possible trade-off where birds 

allocating more resources to skeletal growth and 

development may do so at the expense of body mass 

accumulation. These findings mirror those of 

Liswaniso et al. (2024), who reported weak positive 

correlations between shank circumference and body 

weight and a negative, non-significant relationship 

with growth rate in Chinese Sasso chickens. Such 

trade-offs emphasize that structural traits like leg 

circumference should be considered as 

supplementary, not primary, indicators in breeding 

programs. 

 

Conclusion 

This study confirms the utility of cluster-based 

selection for optimizing growth performance traits in 

Cameroon local chickens, offering a potentially more 

effective alternative to traditional phenotype-based 

selection. Clusters 3 and 4 represent promising 

candidates for targeted breeding efforts due to their 

superior body weight and weight gain profile. In 

parallel, network analysis revealed overlapping 

relationships between clusters and phenotypes, 

suggesting opportunities for strategic cross-cluster 

mating to enhance productivity while maintaining 

genetic diversity. To capitalize on these findings, we 

recommend that local poultry breeders and 

policymakers adopt systematic performance 

recording practices and promote crossbreeding 

strategies within local flocks. Notable limitations 

include the study’s moderate sample size, absence of 

genomic data, and a model that explained only 11.2% 

of total variation in TWG, indicating the need to 

account for additional biological and environmental 

factors. Future research should integrate molecular 

markers and a broader range of performance traits to 

improve classification accuracy and predictive power. 

Overall, the combination of clustering and network 

analysis presents a scalable, evidence-based 

framework for improving growth efficiency and 

genetic resilience in local poultry production systems. 

 

CRediT authorship contribution statement 

Yoniwo SN: Conceptualisation, Methodology, On-

farm experimentation and data collection, Formal 

analyses, Writing the original draft and Editing; Yato 

Katte NK: On-farm experimentation and data 

collection, Writing the original draft and Editing; 

Hako Touko BA: Co-supervision, Conceptualisation, 

Methodology, Reviewing and Validation; Muluh 

DW: On-farm experimentation and data collection. 

Awah Ndukum J: Supervision, Reviewing and 

Validation. 

 

Funding 

The project did not receive any financial support 

Declaration of competing interests 

No potential conflict of interest was reported by the 

authors

 

References 

Adeleke MA, Peters SO, Ozoje MO, Ikeobi CON, 

Bamgbose AM & Adebambo OA. 2010. Growth 

performance of Nigerian local chickens in crosses 

involving an exotic broiler breeder. Tropical 

Animal Health and Production, 43(3): 643–650. 

DOI: 10.1007/s11250-010-9747-3. 

Bembidé C, Hako Touko BA, Christian KT, Osama 

S, Oguho M, Cho CY, Skilton RA & Appolinaire 

D. 2024. Assessment of genetic diversity of local 

chicken (Gallus gallus domesticus) population in 

Central African Republic. Journal of the 

Cameroon Academy of Sciences, 20(2): 153–165. 

DOI: 10.4314/jcas.v20i2.5 

Bembidé C, Hako Touko BA, Manjeli Y & Keambou 

Tiambo C. 2013. Caractérisation 

morphobiométrique de la poule locale en 

Centrafrique. Animal Genetic Resources, 53: 33–

44. DOI: 10.1017/s2078633612000525. 

Bendahman N, & Lotfi D. 2024. Unveiling Influence 

in Networks: A Novel centrality metric and 

comparative analysis through graph-based 

models. Entropy, 26(6), 486. DOI: 

10.3390/e26060486 

Besbes B. 2009. Genotype evaluation and breeding of 

poultry for performance under sub-optimal village 

conditions. World’s Poultry Science Journal, 

65(2): 260-271. DOI: 

10.1017/s0043933909000221 

Birhanu MY, Osei-Amponsah R, Obese FY, & 

Dessie T. 2023. Smallholder poultry production in 

the context of increasing global food prices: Roles 

in poverty reduction and food security. Animal 

Frontiers, 13(1): 17-25. DOI: 10.1093/af/vfac069 

Castellini C, Berri C, Le Bihan-Duval E & Martino 

G. 2008. Qualitative attributes and consumer 

perception of organic and free-range poultry meat. 

World’s Poultry Science Journal, 64(4): 500–512. 

DOI: 10.1017/s0043933908000172 

Celik N. 2020. Welch’s ANOVA: Heteroskedastic 

skew-t error terms. Communications in Statistics - 

Theory and Methods, 51(9): 3065-3076. DOI: 

10.1080/03610926.2020.1788084  

Dahloum L, Moula N, Halbouche M, & Mignon-

Grasteau S. 2016. Phenotypic characterization of 

the indigenous chickens (Gallus gallus) in the 

northwest of Algeria. Archives Animal Breeding, 

59(1): 79-90. DOI: 10.5194/aab-59-79-2016 



 Yoniwo et al., 2026                                                                                                                                                                     63  

 
Poultry Science Journal 2026, 14(1): 49-65 

Delacre M, Lakens D, & Leys C. 2022. Correction: 

Why psychologists should by default use Welch’s 

t-test instead of student’s t-test. International 

Review of Social Psychology, 35(1). DOI: 

10.5334/irsp.661 

Ezugwu AE, Ikotun AM, Oyelade OO, Abualigah L, 

Agushaka JO, Eke CI, & Akinyelu AA. 2022. A 

comprehensive survey of clustering algorithms: 

State-of-the-art machine learning applications, 

taxonomy, challenges, and future research 

prospects. Engineering Applications of Artificial 

Intelligence, 110: 104743. DOI: 

10.1016/j.engappai.2022.104743 

Faostat. 2022. Food and Agriculture Organization of 

the United Nations Statistical Database. Retrieved 

February 6, 2025, from 

https://www.fao.org/faostat/en/  

Fotsa JC, Kamdem DP, Bordas A, Tixier-Boichard 

M, & Rognon X. 2011. Assessment of the genetic 

diversity of Cameroon indigenous chickens by the 

use of microsatellites. Livestock Research for 

Rural Development, 23(5): 16p. Retrieved 

February 6, 2025, from 

http://www.lrrd.org/lrrd23/5/fots23118.htm  

Fotsa JC, Rognon X, Tixier-Boichard M, Coquerelle 

G, Poné-Kamdem D, Ngou-Ngoupayou JD, 

Manjeli Y, & Bordas A. 2010. Caractérisation 

phénotypique des populations de poules locales 

(Gallus gallus) de la zone forestière dense humide 

à pluviométrie bimodale du Cameroun. Animal 

Genetic Resources, 46: 46-59. DOI: 

10.1017/S207863361000069X  

Galdino LSM & da Silva JD. 2024. Hybrid 

clustering: Combining K-Means and interval-

valued data-type hierarchical clustering. Acta 

Polytechnica Hungarica, 21(9): 175–186. DOI: 

10.12700/aph.21.9.2024.9.12. 

Games PA, & Howell JF. 1976. Pairwise Multiple 

Comparison Procedures with Unequal N’s and/or 

Variances: A Monte Carlo Study. Journal of 

Educational Statistics, 1(2): 113. DOI: 

10.2307/1164979 

GIZ. 2018. Poultry production in Cameroon: How the 

import restriction affects the Cameroonian poultry 

sector. Deutsche Gesellschaft für Internationale 

Zusammenarbeit (GIZ) GmbH. Retrieved 

February 5, 2025, from 

https://www.giz.de/de/downloads/GIZSVAAAPol

icy-Brief-Cameroon-Chicken_EN.pdf  

González Ariza A, Arando Arbulu A, Navas 

González FJ, Nogales Baena S, Delgado Bermejo 

JV, & Camacho Vallejo ME. 2021. The Study of 

Growth and Performance in Local Chicken 

Breeds and Varieties: A Review of Methods and 

Scientific Transference. Animals, 11(9): 2492. 

DOI: 10.3390/ani11092492 

Hako TBA, & Yoniwo SN. 2023a. Effect of the 

“Naked neck” gene (Na) on the growth of 

indigenous chicken fed with suboptimal feed 

rations in Cameroon. Bio-Research, 21(1): 1870-

1880. DOI: 10.4314/br.v21i1.10 

Hako TBA, & Yoniwo SN. 2023b. The “Naked neck” 

gene and the adaptability of the local chicken to 

heat stress on station in Cameroon. Bio-Research, 

21(1): 1881-1895. DOI: 10.4314/br.v21i1.11 

Hako Touko BA, Keambou CT, Han J-M, Bembidé 

C, Skilton RA, Ogugo M, Manjeli Y, Osama S, 

Cho C-Y, & Djikeng A. 2015. Molecular typing 

of the major histocompatibility complex B 

microsatellite haplotypes in Cameroon chicken. 

Animal Genetic Resources, 56: 47–54. DOI: 

10.1017/s2078633614000538 

Hako Touko BA, Kong Mbiydzenyuy AT, Tumasang 

TT, & Awah-Ndukum J. 2021. Heritability 

Estimate for Antibody Response to Vaccination 

and Survival to a Newcastle Disease Infection of 

Native chicken in a Low-Input Production 

System. Frontiers in Genetics, 12. DOI: 

10.3389/fgene.2021.666947 

Halima H, Neser FWC, van Marle-Koster E, & de 

Kock A. 2007. Phenotypic variation of local 

chicken populations in northwest Ethiopia. 

Tropical Animal Health and Production, 39(7): 

507-513. DOI: 10.1007/s11250-007-9032-2 

Humaira H & Rasyidah R. 2020. Determining the 

appropriate cluster number using Elbow Method 

for K-Means algorithm. Proceedings of the 2nd 

Workshop on Multidisciplinary and Applications 

(WMA) 2018, 24–25 January 2018, Padang, 

Indonesia. DOI: 10.4108/eai.24-1-2018.2292388. 

Ikotun AM, Ezugwu AE, Abualigah L, Abuhaija B & 

Heming J. 2023. K-means clustering algorithms: 

A comprehensive review, variants analysis, and 

advances in the era of big data. Information 

Sciences, 622: 178–210. DOI: 

10.1016/j.ins.2022.11.139. 

JASP Team. 2024. JASP (Version 0.19.3). Computer 

Software. University of Amsterdam. URL 

https://jasp-stats.org/download/  

Keambou TC, Hako BA, Bembide C, Ngono PJ & 

Manjeli Y. 2013. Effect of genetic type and sex on 

reproductive, growth, survival performance and 

thermal tolerance index of the local chicken 

(Gallus gallus) of the Western Highlands of 

Cameroon. International Journal of Poultry 

Science, 12(2): 80–89. DOI: 

10.3923/ijps.2013.80.89. 

Keambou TC, Hako BA, Ommeh S, Bembide C, 

Ngono EP, Manjeli Y, Wamonje FN, Wanjala B, 

Wamalwa M, Cho CY, Skilton RA & Djikeng A. 

2014. Genetic diversity of the Cameroon 

indigenous chicken ecotypes. International 

Journal of Poultry Science, 13(5): 279–291. DOI: 

10.3923/ijps.2014.279.291. 

Keambou TC, Mboumba S, Hako Touko BA, Bemide 

C, Mezui Mezui T, Tedongmo AMY & Manjeli 

https://www.fao.org/faostat/en/
http://www.lrrd.org/lrrd23/5/fots23118.htm
https://jasp-stats.org/download/


64                                                                                                                    Assessment of Growth in Cameroon Local Chicken 

Poultry Science Journal 2026, 14(1): 49-65 

Y. 2015. Growth performances, carcass and egg 

characteristics of the local chicken and its first-

generation reciprocal crossbreds with an exotic 

strain in Cameroon. Advances in Animal and 

Veterinary Sciences, 3(10): 507–513. DOI: 

10.14737/journal.aavs/2015/3.10.507.513. 

Kindie B & Tamiru C. 2021. Review on phenotypic 

characterization of indigenous chicken and farmer 

breeding trait preference ecotypes in Sekela 

Woreda, Northern Ethiopia. American Journal of 

Bioscience and Bioengineering, 9(2): 49. DOI: 

10.11648/j.bio.20210902.13. 

Kochish II, Titov VY, Nikonov IN, Brazhnik EA, 

Vorobyov NI, Korenyuga MV, Myasnikova OV, 

Dolgorukova AM, Griffin DK & Romanov MN. 

2023. Unraveling signatures of chicken genetic 

diversity and divergent selection in breed-specific 

patterns of early myogenesis, nitric oxide 

metabolism, and post-hatch growth. Frontiers in 

Genetics, 13. DOI: 10.3389/fgene.2022.1092242. 

Kpomasse CC, Kouame YAE, N’nanle O, 

Houndonougbo FM, Tona K, & Oke OE. 2023. 

The productivity and resilience of the indigenous 

chickens in the tropical environments: 

improvement and future perspectives. Journal of 

Applied Animal Research, 51(1): 456-469. DOI: 

10.1080/09712119.2023.2228374 

Leroy G, Kayang BB, Youssao IA, Yapi-Gnaoré CV, 

Osei-Amponsah R, Loukou NE, Fotsa J-C, 

Benabdeljelil K, Bed’hom B, Tixier-Boichard M, 

& Rognon X. 2012. Gene diversity, 

agroecological structure and introgression patterns 

among village chicken populations across North, 

West and Central Africa. BMC Genetics, 13(1). 

DOI: 10.1186/1471-2156-13-34 

Li J, Lee M, Davis BW, Lamichhaney S, Dorshorst 

BJ, Siegel PB, & Andersson L. 2020b. Mutations 

upstream of the TBX5 and PITX1 transcription 

factor genes are associated with feathered legs in 

the domestic chicken. Molecular Biology and 

Evolution, 37(9): 2477-2486. DOI: 

10.1093/molbev/msaa093 

Li W, Liu R, Zheng M, Feng F, Liu D, Guo Y, Zhao 

G, & Wen J. 2020a. New insights into the 

associations among feed efficiency, metabolizable 

efficiency traits and related QTL regions in broiler 

chickens. Journal of Animal Science and 

Biotechnology, 11(1). DOI: 10.1186/s40104-020-

00469-8 

Liswaniso S, Haachilala BH, Chibinga O, Simbaya J, 

Tyasi LT, Sun X, Qin N & Xu R. 2024. Prediction 

of growth rate and body weight of Sasso chickens 

from linear body measurements using path 

analysis. Pakistan Journal of Zoology. DOI: 

10.17582/journal.pjz/20230127010128 

Malomane DK, Weigend S, Schmitt AO, Weigend A, 

Reimer C & Simianer H. 2021. Genetic diversity 

in global chicken breeds in relation to their 

genetic distances to wild populations. Genetics 

Selection Evolution, 53(1). DOI: 10.1186/s12711-

021-00628-z. 

Mapiye C, Chikwanha OC, Chimonyo M, & Dzama 

K. 2019. Strategies for sustainable use of 

indigenous cattle genetic resources in Southern 

Africa. Diversity, 11(11): 214. DOI: 

10.3390/d11110214 

Miyumo SA, Wasike CB, Ilatsia ED, Bennewitz J, & 

Chagunda MGG. 2023. Genetic and phenotypic 

correlations among feed efficiency, immune and 

production traits in indigenous chicken of Kenya. 

Frontiers in Genetics, 13. DOI: 

10.3389/fgene.2022.1070304 

Murtagh, F., & Legendre, P. (2014). Ward’s 

hierarchical agglomerative clustering method: 

Which algorithms implement Ward’s criterion? 

Journal of Classification, 31(3), 274-295. DOI: 

10.1007/s00357-014-9161-z1 

Mustofa F, Fathoni A, Sari APZNL, Sasongko H, & 

Maharani D. 2021. Body weight and body size 

measurement of five Indonesian local chicken. 

IOP Conference Series: Earth and Environmental 

Science, 788(1): 012016. DOI: 10.1088/1755-

1315/788/1/012016 

Nguyen Van D, Moula N, Moyse E, Do Duc L, Vu 

Dinh T & Farnir F. 2020. Productive performance 

and egg and meat quality of two indigenous 

poultry breeds in Vietnam, Ho and Dong Tao, fed 

on commercial feed. Animals, 10(3): 408. DOI: 

10.3390/ani10030408. 

Nigussie D, Tadelle D, Liesbeth H, van der Waaij 

LD, & van Arendonk JAM. 2010. Morphological 

features of indigenous chicken populations in 

Ethiopia. Animal Genetic Resources, 46: 11-23. 

DOI: 10.1017/S2078633610000652 

Nosike RJ, Nwakpu OF, Okocha CN, Inyang EC, 

Ezike JC, & Onunkwo DN. 2020. Phenotypic 

correlations between biologic markers and growth 

traits in Arbor acres broiler chicken strain. 

Nigerian Journal of Animal Production, 45(2): 

21-28. DOI: 10.51791/njap.v45i2.481 

Osei-Amponsah R, Kayang BB, & Naazie A. 2011. 

Age, genotype and sex effects on growth 

performance of local chickens kept under 

improved management in Ghana. Tropical Animal 

Health and Production, 44(1): 29-34. DOI: 

10.1007/s11250-011-0010-3 

Palarea‐Albaladejo J & McKendrick I. 2020. Best 

practice for the design and statistical analysis of 

animal studies. Veterinary Record, 186(2): 59–64. 

DOI: 10.1136/vr.m117 

Pinheiro JC, & Bates DM. 2000. Mixed-Effects 

Models in Sand S-PLUS. In Statistics and 

Computing. Springer New York. DOI: 

10.1007/978-1-4419-0318-1 

Portet S. 2020. A primer on model selection using the 

Akaike Information Criterion. Infectious Disease 



 Yoniwo et al., 2026                                                                                                                                                                     65  

 
Poultry Science Journal 2026, 14(1): 49-65 

Modelling, 5: 111-128. DOI: 

10.1016/j.idm.2019.12.010 

R Core Team. 2022. R: A language and environment 

for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL 

https://www.R-project.org/  

Ren X, Guan Z, Li H, Wen J, Zhao X, Wang G, 

Zhang X, Wang H, Zhang L, Yu F, & Qu L. 2023. 

Extensive intra- and inter-genetic admixture of 

Chinese gamecock and other indigenous chicken 

breeds revealed by genomic data. Poultry Science, 

102(7): 102766. DOI: 10.1016/j.psj.2023.102766  

Rosario MF, Silva MAN, Coelho AAD, & Savino 

VJM. 2008. Selection of traits in poultry breeding 

using cluster analysis. International Journal of 

Poultry Science, 7(4): 374-378. DOI: 

10.3923/ijps.2008.374.378 

Rosenberg NA, Burke T, Elo K, Feldman MW, 

Freidlin PJ, Groenen MAM, Hillel J, Mäki-Tanila 

A, Tixier-Boichard M, Vignal A, Wimmers K & 

Weigend S. 2001. Empirical evaluation of genetic 

clustering methods using multilocus genotypes 

from 20 chicken breeds. Genetics, 159(2): 699–

713. DOI: 10.1093/genetics/159.2.699 

Rother B, Sosa S, Mitra P, Kim D, Pierre G, Fayad D, 

Debbich M, Thevenot C, Kohler L, Kato N, 

Castrovillari C, Sharifzoda K, Van Heuvelen E, & 

Machado F. 2022. Tackling the Global Food 

Crisis. IMF Notes, 2022(004): 1. DOI: 

10.5089/9798400221972.068 

Shapiro SS & Wilk MB. 1965. An analysis of 

variance test for normality (complete samples). 

Biometrika, 52(3/4): 591. DOI: 10.2307/2333709. 

Sutherland C, Hare D, Johnson PJ, Linden DW, 

Montgomery RA & Droge E. 2023. Practical 

advice on variable selection and reporting using 

Akaike information criterion. Proceedings of the 

Royal Society B: Biological Sciences, 290(2007). 

DOI: 10.1098/rspb.2023.1261. 

Syakur MA, Khotimah BK, Rochman EMS, & Satoto 

BD. 2018. Integration K-Means clustering method 

and elbow method for identification of the best 

customer profile cluster. IOP Conference Series: 

Materials Science and Engineering, 336: 012017. 

DOI: 10.1088/1757-899x/336/1/012017 

Tixier-Boichard M. 2002. From phenotype to 

genotype: major genes in chickens. World’s 

Poultry Science Journal, 58(1), 65–75. DOI: 

10.1079/wps20020008   

Vakhrameev AB, Narushin VG, Larkina TA, 

Barkova OY, Peglivanyan GK, Dysin AP, 

Dementieva NV, Makarova AV, Shcherbakov 

YS, Pozovnikova MV, Bondarenko YV, Griffin 

DK & Romanov MN. 2023. Disentangling 

clustering configuration intricacies for divergently 

selected chicken breeds. Scientific Reports, 13(1). 

DOI: 10.1038/s41598-023-28651-8. 

Venturini T, Jacomy M, & Jensen P. 2021. What do 

we see when we look at networks: Visual network 

analysis, relational ambiguity, and force-directed 

layouts. Big Data & Society, 8(1). DOI: 

10.1177/20539517211018488 

Yang S, Shi Z, Ou X & Liu G. 2019. Whole-genome 

resequencing reveals genetic indels of feathered-

leg traits in domestic chickens. Journal of 

Genetics, 98(2). DOI: 10.1007/s12041-019-1083-

4. 

Yi Z, Li X, Luo W, Xu Z, Ji C, Zhang Y, Nie Q, 

Zhang D & Zhang X. 2018. Feed conversion ratio, 

residual feed intake, and cholecystokinin type A 

receptor gene polymorphisms are associated with 

feed intake and average daily gain in a Chinese 

local chicken population. Journal of Animal 

Science and Biotechnology, 9(1). DOI: 

10.1186/s40104-018-0261-1. 

Zhang Y, Phillips CA, Rogers GL, Baker EJ, Chesler 

EJ, & Langston MA. 2014. On finding bicliques 

in bipartite graphs: a novel algorithm and its 

application to the integration of diverse biological 

data types. BMC Bioinformatics, 15(1). DOI: 

10.1186/1471-2105-15-110 

Zhang Z, Xu Z, & Li H. 2021. Identification of QTL 

regions and candidate genes for growth and feed 

efficiency in broilers using a genome-wide 

association study. Genetics Selection Evolution, 

53(1): 1-12. DOI: 10.1186/s12711-021-00608-3 

Zhao S, Sun J, Shimizu K, & Kadota K. 2018. 

Silhouette Scores for Arbitrary Defined Groups in 

Gene Expression Data and Insights into 

Differential Expression Results. Biological 

Procedures Online, 20(1): 5. DOI: 

10.1186/s12575-018-0067-8 

  

https://www.r-project.org/
https://doi.org/10.1079/wps20020008
https://doi.org/10.1079/wps20020008

