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Abstract

This study integrates clustering and network analyses to identify
performance-based groups and their connections to phenotypes, providing
insights to optimize local chicken breeding programs in Cameroon. A total
of 113 birds were grouped based on growth patterns between 16 and 22
weeks, assessed using total weight gain (TWG) and leg circumference gain
(LCG). Repeated measures and Welch ANOVA were used to test
performance differences, while Generalized Least Squares (GLS) ANCOVA
identified growth predictors. Although phenotypic diversity was observed,
TWG and LCG did not differ significantly across phenotypes (P> 0.05),
whereas final body weight (BW) and leg circumference (LC) at 22 weeks
did (P<0.01). Cluster analysis identified four distinct performance cluster
groups independent of phenotype, with significant divergence in
performance. Birds in Clusters 3 and 4 consistently outperformed (P<0.001)
their counterparts in the other Clusters 1 and 2, showing superior TWG and
LCG while sexual dimorphism was in favour of males (P<0.05). Cluster 4
exhibited the highest final BW, whereas Cluster 3 had the greatest total
weight gain, indicating a distinct tendency for early and late-stage growth,
which could be strategically optimized for selective crossbreeding to
combine their complementary traits. Network analysis indicates historical
gene flow and possible heterozygosity within the population, with Normal
and Feathered shank phenotypes potentially serving as genetic bridges for
performance traits, while the distinct peripheral positioning of Feathered leg
and Naked neck, linked only to Clusters 1 and 2, suggests genetic
distinctiveness. GLS-ANCOVA confirmed Cluster 3 and 4, as the most
significant predictors of TWG (P<0.001), alongside sex (P<0.05) and LCG
(P<0.05). Integrating cluster and network analysis can enhance sustainable
breeding strategies in low-input systems, balancing growth efficiency with
genetic diversity. Breeders and policymakers are encouraged to adopt
systematic performance recording practices and promote cross-cluster
crossbreeding within local flocks.

Introduction

through the breeding of indigenous chicken stocks,

With the global increase in food prices, food
insecurity remains a  significant  challenge,
particularly in developing countries with limited
resources. Poultry farming in these regions plays a
pivotal role in supporting rural livelihoods, enhancing
food security, and alleviating poverty, especially

which are a valuable resource for both meat and egg
production (Besbes, 2009; Birhanu et al., 2023). In
Cameroon, the poultry industry has experienced
significant growth over the years, with current annual
meat and egg production standing at 123,000 tonnes
and 88,000 tonnes, respectively (FAOSTAT, 2022).
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However, the industry's heavy reliance on imported
stock poses a real threat to national sovereignty,
especially during global pandemics characterized by
trade and movement restrictions (GIZ, 2018; Rother
et al., 2022). Consequently, valorizing indigenous
genetic resources is seen as a better and more
sustainable alternative for a resilient livestock sector
(Mapiye et al., 2019; Hako and Yoniwo, 2023a).

Cameroon local chicken represents a valuable
genetic resource, renowned for its adaptability to
local environmental conditions and resilience to
diseases and climate stress, particularly in low-input
farming systems (Hako Touko et al., 2021; Hako and
Yoniwo, 2023b). This wunique adaptability is
underpinned by considerable genetic diversity, which
constitutes an important reservoir for breeding and
selection programs aimed at improving growth
performance, egg production, and disease resistance
(Keambou et al., 2015). The richness of the gene pool
of Cameroon local chickens has been underscored
through genetic studies (Fotsa et al, 2011; Hako
Touko et al., 2015). Analysis of 25 microsatellite
markers revealed a diverse genetic structure,
harbouring tropical genes that can be harnessed for
genetic improvement programs (Keambou et al,
2014). Despite their adaptability, the local chickens
often display slow and inconsistent growth
performance, which is inherently influenced by their
genetic makeup and phenotypic traits in combination
with environmental and management factors
(Kpomasse et al., 2023). Notably, there is a
considerable level of genetic admixture and
introgression within the population, which contributes
to overlapping traits and variations in growth and
productivity outcomes (Gonzalez Ariza et al., 2021;
Leroy et al., 2012). Phenotypic traits such as body
weight, feed conversion ratio, average daily gain and
other morphometric parameters, including shank
length and circumference, have been reported to be
greatly correlated with growth rate and productivity
in chicken (Nosike et al., 2021; Miyumo et al., 2023).

The use of genetic selection tools such as QTLs
has significantly enhanced production efficiency in
broiler chickens. For example, selecting for low
residual feed intake (RFI) has improved feed
conversion ratios and reduced waste (Li et al., 2020a;
Zhang et al., 2021). However, the implementation of
QTL-based selection is limited in many low-income
contexts due to significant technical and economic
constraints.  Moreover, intensive trait-specific
selection can also lead to a loss in genetic diversity,
potentially reducing the overall resilience and
adaptability of the population (Malomane et al.,
2021).

In such settings with limited access to these
advanced breeding tools, complementary phenomics-
based selection strategies like clustering offer cheap
alternatives for grouping and selecting animals based

on performance metrics such as growth outcomes.
While previous studies have primarily used clustering
to classify chicken breeds based on genetic markers
(Rosenberg et al., 2001; Vakhrameev et al., 2023) or
phenotypic characteristics (Kochish et al., 2023), this
study innovates by applying performance-based
clustering to identify growth-optimized subgroups
within a single indigenous population. Rosario et al.
(2008) in their study demonstrated that clustering
analysis on performance and morphometric traits is
effective for assessing phenotypic variability and can
help identify key traits for breeding programs. They
further concluded that body weight was the most
important morphometric trait for clustering analysis
in indigenous chicken populations. However, few
studies have applied clustering analysis to group and
select birds based on growth performance data in
Africa, and fewer still have linked these clusters to
phenotypes. Our study builds on such work by
classifying  Cameroon local chickens using
hierarchical and K-means clustering of growth traits
and visualizing cluster-phenotype relationships using
network plots. Furthermore, unlike previous
approaches, we also complement this by identifying
significant predictors of weight gain using
Generalised Least Squares Analysis of Covariance
(ANCOVA). We hypothesize that performance-based
clustering can identify biologically meaningful
subgroups not apparent through phenotype alone, and
these subgroups (clusters) interpreted through
network analysis can inform more effective and
sustainable selection practices. By employing this
hybrid approach, we aim to assess growth variation,
examine cluster-phenotype interactions, and provide
practical selection recommendations to optimize meat
production while supporting the sustainability and
resilience of local poultry farming in Cameroon.

Materials and methods

The animal experiment was approved by the
University of Dschang’s Department of Animal
Sciences  Ethics Committee (Ethics  No:
DZOO/CE/01322). The study was conducted at the
Teaching and Research Farm of the University of
Dschang, which is located between latitudes 5° and 7°
North and longitudes 8° and 20° East in the Cameroon
Western Highlands. A total of 177 day-old chicks
were obtained by incubating eggs randomly collected
from farmer households in the Western region of
Cameroon. These were reared together under uniform
conditions until 16 weeks of age, as part of a broader
research initiative focused on the performance
evaluation and selective breeding of local chickens
for growth and egg production traits. For the current
analysis, a subset of 113 birds was selected based on
health status and the need to represent all phenotypes
present in the population.
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At week 16, the birds were phenotyped, sexed,
tagged and housed in separate pens with slatted floors
based on phenotype. Phenotyping was done by
visually classifying chickens into different
morphological categories, while tagging was done
using leg bands. The five phenotypes under study
were the Naked neck (4), Crested (7), Feathered leg
(4), Feathered shank (4) and Normal feathered
chickens (86), representing 3.5%, 6.2%, 3.5%, 10.6%
and 76.2% of the sample size. These proportions
reflect the natural occurrence of these phenotypes
among the local chicken population in Africa as
observed by Fotsa et al. (2010), Bembidé et al.
(2013) and Dahloum et al. (2016). All birds were
served the same commercial feed (Table 1), provided
once a day, ensuring that each bird received at least
80 g, which was deemed appropriate for local
chickens aged 16 weeks and above (Yi et al., 2018).
Water was always made available in drinking
troughs.

Table 1: Feed composition and calculated nutritional
content

Ingredient Unit Quantity
Maize % 53.25
Wheat bran % 24.25
Soybean meal % 17.50
Premix % 5.00
Calculated nutritional composition

Proteins % 18.17
Energy kcal/kg 2638
Fibers % 5.32
Calcium % 0.32
Phosphorus % 0.60
Lysine % 0.91
Methionine % 0.36

Data Collection

Body weight (BW) and leg circumference (LC) were
measured weekly from 16 to 22 weeks using a Camry
digital kitchen scale (5 kg capacity, 0.1 g precision)
and a calliper (0.1 mm precision), respectively. To
quantify growth performance, both weekly and total
gains were computed. Weekly body weight gain
(WWG) (equation 1) and weekly leg circumference
gain (WLC) (equation 2) were calculated by
subtracting the values of the previous week from the
current week’s values, reflecting short-term
increment in growth. Total weight gain (TWG)
(equation 3) and total leg circumference (LCG)
(equation 4) of the birds were equally computed to
assess cumulative performance over the study period
and served as the primary input for subsequent cluster
and network analysis.

WWG = BW cyrrent week — BW previous week
(Equation 1)
WLC = LC current week — LC previous week (Equation 2)
TWG = BW 33 weeks = BW 16 weeks (Equation 3)
LCG = LC 33 weeks — LC 16 weeks (Equation 4)

Statistical analysis

A hybrid clustering approach was employed to
classify chickens based on total weight gain (TWG)
and total leg circumference gain (LCG) from 16 to 22
weeks (Galdino and da Silva, 2024). First,
hierarchical cluster analysis (HCA) using Ward’s
method was applied to explore the overall data
structure and guide the choice of cluster number
(Murtagh & Legendre, 2014). This was followed by
K-means clustering, which finalized group
assignments based on proximity to cluster centroids
(Vakhrameev et al., 2023). The combination of these
two approaches, which are commonly used in
exploratory biological studies, balances the visual
interpretability of HCA while leveraging the
partitioning efficiency of K-means (Galdino and da
Silva, 2024). Although K-means alone is suitable for
larger datasets, HCA was used here as an exploratory
step to assess natural groupings and inform cluster
selection. The optimal number of clusters was
determined and confirmed using the Elbow Method
and Silhouette Analysis (Zhao et al., 2018; Humaira
& Rasyidah, 2020). The Elbow Method examines the
point at which the reduction in within-cluster sum of
squares begins to level off, indicated by the “elbow”
point (Syakur et al., 2018), while the Silhouette score,
which ranges from -1 to 1, assesses how well each
point fits within its cluster (Ezugwu et al., 2022). The
following equation (5) represents the objective
function for optimizing K-means -clustering, by
minimizing the total within-cluster variance (Ikotun
etal., 2023).

K

Jek = z Z Il x — p; II? (Equation 5)

i=1 xeC;

Where: K = The number of clusters; C; = The set of
points in the i cluster; x = A data point; y; = The
centroid of the i cluster (mean of all points in C;);
Il x — p; II?= The squared Euclidean distance between
the data point x and the cluster centroid y;.

Additionally, network analysis was conducted to
explore  relationships  between clusters and
phenotypes. This helped to visualize shared
performance traits and possible overlap among
groups, offering insight into potential genetic
connections or historical crossbreeding patterns. In
this network bipartite graph, the nodes represent
phenotypes and clusters, while edges indicate their
connections (Zhang et al., 2014). The network was
analyzed using degree centrality, which quantifies
how connected each phenotype is across multiple
clusters, offering insights into performance
distribution (Venturini et al, 2021). The clarity of
visual representation was enhanced by applying a
spring layout algorithm to optimize node positioning,
and highlight the interconnections (Bendahman &
Lotfi, 2024).
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To assess whether growth and leg circumference
changed significantly over time, a repeated measures
ANOVA was conducted. Prior to analysis, the
Shapiro-Wilk normality test (Shapiro & Wilk, 1965)
confirmed that the residuals followed a normal
distribution (W = 0.9881, p-value = 0.4292).
However, given the unequal sample sizes across
phenotypes, Welch’s ANOVA was used to compare
total weight gain (TWQG) and total leg circumference
gain (LCG) across phenotypes, clusters, and sex.
Unlike traditional ANOVA, this method is robust to
violations of variance homogeneity and adjusts
degrees of freedom using the Welch-Satterthwaite
equation (Delacre et al., 2017; Celik, 2020). Post hoc
pairwise comparisons were performed using Games-
Howell tests, which account for unequal variances
and sample sizes without assuming pooled variance
(Games & Howell, 1976). The choice of Welch
ANOVA and Games-Howell tests was based on the
clear imbalance in group sizes and the inherent
biological variability expected in field data from
indigenous chicken populations, which may trigger
variance heterogeneity in performance data. A
generalized Welch ANOVA model is specified as
follows (Equation 6).

Yiji =+ (A" +Bj + (O)” + (AB)y;" + ey
(Equation 6)
Where: Y;j, = TWG or LCG for the & individual in
the i Cluster and j” sex group; p = Overall mean;
(A);' = Fixed effect cluster (i varying from 1 to 4); B;

= Fixed effect of sex (j varying from 1 to 2); (€)% =
Fixed effect of phenotype (k varying from 1 to 5);
(AB); jk* = Interaction effect between sex and cluster
(applies only in cluster-based comparisons); e, =
Residual error term: e;j, ~ N(O,0yj), where oy
represents within-group-specific variance that differs
across levels of sex, cluster and or phenotype.

Superscripts ! and ? indicate that the respective
terms are only included in models testing cluster-
based and phenotype-based comparisons,
respectively. Interaction involving phenotype and sex
was not tested in phenotype-based models due to a
considerable imbalance in sex distribution across
phenotypes. For instance, the Naked neck group (4)
had just one cock and 3 hens. This skewed
distribution limited the ability to draw statistically
meaningful  conclusions  from  sex-phenotype
interactions.

Generalized least squares (GLS) analysis of
covariance (ANCOVA) was used to assess the
determinants of growth in chicken with TWG as the
response variable. The experimental design consisted
of a one-factor fixed-effects model with cluster, sex,
and phenotype treated as fixed factors, and leg

circumference gain (LCG) included as a covariate to
adjust for variation in structural growth. The model
accounted for heteroscedasticity across groups by
applying variance weighting to estimate a separate
variance component for each group, as indicated by
Pinheiro & Bates (2000). Interaction terms between
cluster and sex were also included to assess sex-
specific performance patterns. GLS-ANCOVA was
favoured over standard ANCOVA due to its
flexibility in handling unequal group variances, and it
yielded a slightly better fit (AIC = 1270.56 vs.
1325.49). The AIC is a common metric for model
comparison in biological studies, where a lower AIC
value indicates a better fit to the data (Portet, 2020;
Sutherland et al, 2023). While the absolute AIC
difference (~4%) is modest and not definitive on its
own, the choice of GLS was also guided by the
known variance heterogeneity in the dataset. We
therefore interpret this improvement cautiously,
acknowledging that it complements, but does not
solely justify, the use of GLS in this context. The
GLS ANCOVA model was specified as shown in
equation (7).
BWGiji = pt + Ci +Sj + Py + (B-LCGyjp.) + 0. - e
(Equation 7)

Where: BWG,j;, = Observed total weight gain for the
k™ individual in the i Cluster and j Phenotype.; p =
Overall mean; C; = Fixed effect cluster (i varying
from 1 to 4); S; = Fixed effect of sex (j varying from
1 to 2); P, = Fixed effect of phenotype (k varying
from 1 to 5); B.LCGyj" = LCG (leg circumference
gain) as covariate, where [ is the regression
coefficient; g, = Variance component specific to each
phenotype group; e;j, = Random error or residual
effect for the k™ individual.

Finally, Pearson correlation was used to assess the
relationship between the leg circumference and body
weight of the studied chickens. Descriptive summary
statistics and repeated measures ANOVA was
performed with JASP 0.19.3 software (JASP Team,
2024), while Python (colab.research.google.com) was
used to perform both clustering and network analysis,
Pearson correlation and to generate graphical output
of growth trends. Finally, R Studio 4.2.2 (R Core
Team, 2022) was employed for Welch-ANOVA and
GLS-ANCOVA modelling.

Results

Growth performance of local chicken phenotypes
Figure 1 illustrates the weekly evolution and
cumulative gains in body weight and leg
circumference for the studied Cameroon local
chicken phenotypes, providing a detailed comparison
of growth patterns.

Poultry Science Journal 2026, 14(1): 49-65



Yoniwo et al., 2026

53

RMAnova p = 0.007

Phenaotype
=—— Normal
— = Feathered shanks
—  MNaked neck
==+ Feathered legs
—— Crested

(A)

1600

1400

1200

Body Weight (g)

1000

18 weeks 19weeks 20weeks 21weeks 22 weeks
Age (in weeks)

RMAnova p = 0,002

16 weeks 17 weeks

(B)

14

Phenotype
—— Normal b
=~ = Feathered shanks
= Naked neck
<« Feathered legs
—— Crested

13

- =
=] [~]

-
o

Leg Circumference (mm)

————"

16 weeks 17 weeks 18 weeks 19weeks 20weeks 21 weeks 22 weeks
Age (in weeks)

Phenotype
—— Normal
— — Feathered shanks
7 == Naked neck
«+. Feathered legs -
| — crested et -

(C) 450 1

Cumulative Body Weight Gain (g)
B n N w w 2
& =1 & & & S
3 3 3 53 S 3

=
5
5]

20 weeks 21 weeks 22 weeks

Age (in weeks)

18 weeks 19 weeks

(D) 5 Phenotype

= Normal

— = Feathered shanks
—  Naked neck

++. Feathered legs
—— Crested

~ w ~

Cumulative Leg Circumference Gain (mm)

"

20 weeks 21 weeks 22 weeks

Age (in weeks)

18 weeks 19 weeks

Figure 1. Weekly evolution in body weight (A) and leg circumference (B), and body weight gain (C) and leg
circumference gain (D) from 16 to 22 weeks in Cameroon local chickens. Line plots show weekly means.

Repeated measures ANOVA p-values are
reported; different letters indicate significant pairwise
differences based on Games-Howell tests.

The results of repeated-means ANOVA revealed
significant differences in the phenotype’s growth rate
(P< 0.01) and leg circumference (P<0.01). All
phenotypes displayed a steady increase in body
weight, but with distinct growth rates (Figure 1A).
The feathered leg chickens, for instance, exhibited the
highest growth, reaching 1689.9 g by 22 weeks,
followed by the feathered shanks (1182.2 g), crested
(1097.3 g) and normal (1085.6 g) chickens. The
naked neck chicken had the lowest final weight
(924.6 g), but was not statistically different from the
crested, normal and feathered shank chickens.
Similarly to the body weight, the feathered leg
chickens exhibited the largest leg circumference (14.2
mm) by 22 weeks, followed by the feathered shanks
(11.2 mm), normal (10.1 mm) and crested (9.7 mm)
chickens (Figure 1B). The naked neck chicken
equally had the smallest final leg circumference (9.6
mm). However, this was not statistically different
from the feathered shanks, naked neck, crested and
normal chickens. The cumulative gains in live weight
(Figure 1C) as well as the cumulative gains in leg

circumference (Figure 1D) mirror the evolution
trends as the feathered leg and feathered shank
chickens consistently outperform the other
phenotypes between 16 and 22 weeks.

The total weight gain (TWG) and overall leg
growth (LCG) across phenotypes as well as sexes at
the end of the 22 weeks are presented in Figure 2.
Welch’s ANOVA showed a non-significant
difference in the TWG (P> 0.05) and LCG (P> 0.05).
However, the feathered shank chickens showed a
superior mean TWG (455.7 g) followed by the
feathered shank chickens (384.6 g). Conversely, the
naked neck chickens recorded the least average total
weight gain (263.0 g) (Figure 2A). Likewise, the
feathered leg (4.9 mm) and feathered shank (3.5 mm)
chickens equally had slightly higher overall leg
growth (LCG) compared to the other phenotypes
(Figure 2C). Similarly, the naked neck (2.4 mm) and
crested chickens (2.0 mm) also had the least TWG.

In contrast to phenotypes, differences in TWG
and LCG by sex were statistically significant (P<
0.001), with cocks (&) achieving a higher overall
weight gain of 378.9 g (Figure 2B) and leg
circumference growth of 3.3 mm compared to 282.6 g
and 2.1 mm respectively in the hens (?) (Figure 2D).
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Figure 2. Total weight gain (TWG) by phenotype (A) and sex (B), and leg circumference gain (LCG) by
phenotype (C) and sex (D). Boxplots show medians and interquartile ranges. Welch’s ANOVA p-values are
reported; different letters denote significant pairwise differences based on Games-Howell post hoc tests.
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Figure 3. Determination of the optimal number of clusters using the Elbow method and Silhouette score (SS).
The plot shows the reduction in within-cluster distance as the number of clusters increases from 1 to 10. The
inflection points (elbow) suggest the optimal cluster number. Four clusters were selected based on a balance
between interpretability and performance, despite the highest SS being observed at two clusters.
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Cluster and network analysis

Although the two-cluster solution had the highest
average silhouette score (0.60), we opted for a four-
cluster configuration (score = 0.55) to better capture
subtle but meaningful biological variations in growth
performance. The two-cluster grouping was
statistically compact but too coarse, and obscured
important growth distinctions. Contrastingly, the
four-cluster solution allowed us to detect meaningful
differences in performance, particularly between
Clusters 3 and 4 and Clusters 1 and 2, thus offering a
more practical basis for selection. This decision
balanced statistical fit with biological relevance and

aligned with exploratory clustering practices in
livestock studies (Palarea - Albaladejo &
McKendrick, 2020). Moreover, the very slight
difference of 0.05 in the Silhouette score highlights
the fact that the four-cluster solution remains
reasonably well separated and meaningful for
subsequent analysis.

The dendrogram of performance clusters obtained
from agglomerative hierarchical clustering of the total
weight gain and leg circumference gain data points
using Ward's linkage method is illustrated in Figure
4.

14

12

10

Distance

BCV = 0.5604
WCV = 0.4396

C4 C3

Cl C2

Figure 4. Hierarchical clustering dendrogram showing four performance clusters (C1-C4) derived from total
weight gain (TWG) and leg circumference gain (LCG). Ward’s method with Euclidean distance was applied.
Vertical distances reflect dissimilarity between clusters. BCV and WCV represent the calculated between-cluster

variance and within-cluster variance.

It is observed that Cluster 3 (C3) and Cluster 4
(C4) merge at approximately 8, indicating a moderate
level of similarity between these two clusters. On the
other hand, Clusters 1 (C1) and Cluster 2 (C2) merge
at a shorter distance of around 6, suggesting a higher
degree of similarity between them compared to C3
and C4. Ultimately, all four clusters (C1, C2, C3, and
C4) merge at a greater distance of approximately 14,
signifying the point at which all data points are
grouped into a single cluster. The analysis reveals
that the between-cluster variance (BCV) accounts for
56.04% of the total variance, highlighting the distinct
differences between the clusters. Meanwhile, the
within-cluster variance (WCV) is 43.96%, reflecting
the variability within each cluster.

The PCA plot (Figure 4A) illustrates the
distribution of the different phenotypes based on the
first two principal components, which capture most of

the variance in the data. The normal, crested, and
naked neck chickens appear to cluster more centrally,
although some normal feathered chickens are equally
scattered widely across the plot. This indicates a
diverse range of phenotypic expressions within the
normal category. However, the feathered shank and
feathered leg chickens are more peripheral,
suggesting they could be more distinct. The K-means
plot (Figure 4B) shows the aggregation of the four
performance clusters on the PCA space mapped by
cluster markers. Overall, clusters appear to be
comprised of different phenotypes. For instance, the
normal feathered chickens appear to be found in all
clusters, whereas feathered leg chickens are distinctly
located in either Cluster 3 or Cluster 4. Also, the
Crested and naked neck chickens seem to be more
concentrated in cluster 1 and cluster 2.
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Figure 5. Principal component analysis (PCA) biplots. (A) Distribution of birds by phenotype across the first
two principal components. (B) K-means cluster assignments overlaid on PCA-reduced space, with ellipses
indicating cluster dispersion. The plot illustrates how performance-based clusters partially overlap with
phenotypic classifications, reflecting both convergence and divergence in growth traits

Additionally, Cluster 3 and Cluster 4 consist of
more dispersed chickens along the horizontal axis
(PC1), suggesting greater variability in the principal
component 1 dimension. In contrast, Cluster 1 and
Cluster 2 seem to be closer to the origin of the plot
and are more distinct from each other, indicating less
variability in PC1 but potentially more in PC2.

A simplified visualization of the association
between performance clusters and local chickens
phenotypes is presented on the bipartite network plot
(Figure 6). Results confirm that the feathered legs

phenotype is peripherally located while the normal
feathered chickens is centrally located, as previously
identified by the K-means cluster results (Figure 4).
Additionally, Clusters 3 and 4 are more associated
with distinct phenotypes, including feathered legs and
feathered shanks, while crested, normal and naked
necks are more represented across Clusters 1 and 2.
However, the normal chickens and feathered chickens
are also connected to all four clusters, equally
confirming the K-means clustering results.

Feath.d legs
cl’ 4

Clusters
Phenotypes

- Nak.|eck
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Figure 6. Bipartite network plot showing associations between phenotypes and performance-based clusters.
Node colour indicates category (red = phenotype, blue = cluster), and edge thickness reflects the frequency of
phenotype occurrence within each cluster. The central position of Normal and Feathered Shank phenotypes
suggests a broad distribution across clusters.

Growth performance of local chickens clusters between weeks 16 and 22 for the performance
Results on the weekly trend and the cumulative gains clusters are presented in Figure 7.
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Figure 7. Weekly evolution in body weight (A) and leg circumference (B), and body weight gain (C) and leg
circumference gain (D) from 16 to 22 weeks in local chickens clusters. Line plots show weekly means. Repeated
measures ANOVA p-values are reported; different letters indicate significant pairwise differences based on
Games-Howell tests.

There was a very significant difference in the followed by Cluster 4 consistently gained more
growth profile (P<0.001) and leg circumference (P< weight than their counterparts in Clusters 2 and 1.
0.001) of the different groups. A general trend can be Welch ANOVA revealed significant differences

observed across clusters showing a steady increase in in TWG (P<0.001) and LCG (P<0.001) for
body weight (Figure 7A) and leg circumference performance clusters with chickens Cluster 3 and
(Figure 7C), but at varying rates. Cluster 3 and Cluster 4, respectively, gaining an average of 478.9 g
Cluster 4 recorded the highest live weights (1381.9 g and 413.2 g in live weight between 16 and 22 weeks
and 1336.4 g, respectively) by 22 weeks. Conversely, (Table 2). The least cumulative gains were recorded
Cluster 1 and Cluster 2 chickens showed the lowest for Clusters 1 (284.5 g) and lastly Cluster 2 (258.8 g).
but distinct evolution in body weight, with a final However, subjects in Cluster 4 (6.4 mm) had superior
weight of 1061.3 g and 954.7 g, respectively, by 22 overall leg growth, followed by those in Cluster 1
weeks. Similarly, the largest leg circumference by 22 (3.0 mm) and Cluster 3 (2.7 mm). Chickens in Cluster
weeks was observed for Clusters 4 (14.2 mm) and 3 2 had the lowest (P<0.001) mean LCG (1.07 mm)
(20.6 mm) while Clusters 1 and 2 had the smallest leg compared to the subjects in other clusters.

circumferences (10.6 mm and 8.7 mm). The Although there was no significant difference (p >
cumulative weekly gains in body weight (Figure 7B) 0.05) in the TWG and LCG across sexes within each
and leg circumference (Figure 7D) equally mirror the cluster group, results show that overall, cocks (J)
evolution trends as local chickens in Clusters 3 outperform the hens (@) both in terms of TWG and
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LCG. However, ANOVA revealed a significant
interaction effect (P<0.001) between sex and clusters
(S*C), indicating that the impact of sex on performance
is not independent of the cluster grouping.

To assess the relationship between the increase in
leg circumference and the gain in body weight, a

correlation analysis was performed by plotting TWG
against LCG, as shown in Figure 8. The results
revealed a statistically significant (P< 0.001) positive
correlation between TWG and LCG. However, the
relatively weak correlation coefficient (r = 0.31)
suggests that the association is not very strong.

Table 2: Summary statistics of total weight (TWG) and leg circumference (LCG) gain of local chickens by
cluster and sex from 16 to 22 weeks

Variable Cluster Sex N Mean SD CVv p-C p-S*C
Hen (Q)° 30 246.6° 933 0.38
Cluster 22 Cock (&)? 12 271.1%® 95.8 0.35
Subtotal C2 42 258.8 94.5 0.38
Hen (Q)? 19 2725 513 0.19
Cluster 12 Cock (&)? 17 296.4%® 57.4 0.19
Subtotal C1 36 284.5 54.3 0.19
TWG Hen (9)? 4 3809% g50  0g2 0001 <0001
Cluster 4> Cock (&) 10 436.5 137.7 0.32
Subtotal C4 14 413.2 111.3 0.27
Hen ()2 5 453.0° 33.9 0.08
Cluster 3°  Cock (3)a 16 504.8° 86.7 0.17
Subtotal C3 21 478.9 60.3 0.13
Hen (Q)° 30 1.0° 06 0.62
Cluster 22 Cock (&)? 12 1.4° 0.7 0.48
Subtotal C2 42 1.2 0.6 0.55
Hen (Q)? 19 2.9° 06 0.21
Cluster 1°  Cock (3)2 17 3.12 1.1 0.35
Subtotal C1 36 3.0 0.8 0.19
LCG Hen (9)? 4 6.1¢ 0.7 011 <0001 <0001
Cluster 4°  Cock (&)? 10 6.6° 1.0 0.16
Subtotal C4 14 6.4 0.9 0.14
Hen (9)° 5 2.5 1.4 0.54
Cluster 3¢ Cock (3)a 16 2.82 1.3 0.46
Subtotal C3 21 2.7 1.3 0.50

Note. N (frequency), SD (standard deviation), CV (coefficient of variation), p (p-value for Welch ANOVA,
not assuming equal variance), C (Cluster), S*C (Interaction).

Leg Circumference Gain (mm)
£

Pearsonr = 0.31
p-value = 0.0009

T T T
100 200 300

T T T T
400 500 600 700

Body Weight Gain (g)
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Figure 8. Scatter plot showing the relationship between body weight gain (TWG, g) on the x-axis and leg
circumference gain (LCG, mm) on the y-axis in Cameroon local chickens. The red line represents the line of best
fit with a 95% confidence interval shaded in pink. Pearson correlation coefficient (r) and p-value are displayed in

the top-left corner.

Factors influencing growth

A general least squares analysis of covariance was
performed to understand the factors influencing
growth performance in local chickens. Total weight

gain (TWQG) was used as the dependent variable, leg
circumference gain (LCG) as the covariate, and
phenotype, cluster and sex were included as factors
(Table 3).

Table 3: GLS-ANCOVA results for factors influencing overall weight gain

Variable Value SE t-value p-value
Cluster

Cluster 2 -52.92 26.03 -2.03 0.045*

Cluster 3 192.37 24.33 7.91 < 0.001***

Cluster 4 192.50 43.48 443 < 0.001***
Sex

Cock 42.03 18.23 2.31 0.023*
Phenotype

Feathered legs 19.29 65.64 0.29 0.769

Feathered shanks -0.31 44.58 -0.01 0.994

Naked neck -0.59 41.59 -0.01 0.989

Normal -10.31 36.66 -0.28 0.779
Leg circumference gain -19.14 9.37 -2.04 0.044*
Model parameters

Intercept 326.36 45.87 7.12 < 0.001***

Model Nagelkerke R? 0.11

Model AIC 1270.56

ANCOVA AIC 1325.49

SE, standard error; R?, coefficient of determination. ™ and * significant at P<0.001, P<0.01 and P<0.001,

respectively.!

Cluster groups significantly affected weight gain,
with Cluster 3 (P<0.001) and Cluster 4 (P<0.001)
each gaining approximately 192 g more than the
Cluster 1 chickens between weeks 16 and 22.
Contrastingly, Cluster 2 chickens significantly
(P<0.05) gained 52.9 g less than Cluster 1 chickens
during the same period. Sex is also a significant
(P<0.05) predictor of growth performance in adult
local chickens with cocks gaining 42 g more than
hens. Further, gain in leg circumference (LCG) has a
small but significant negative effect (P<0.05%, -19.2)
on weight gain, indicating there is 19.2 g less in body
weight per mm gain in leg circumference.
Conversely, phenotype is not an important (P> 0.05)
indicator of growth performance in adult local
chickens. Nonetheless, Feathered legs chickens
gained slightly more (approximately 19.3 g and 29.7
g) body weight compared to the crested and normal
feathered counterparts when corrected for growth in
leg circumference (LCG).

Discussion

Cameroon local chickens display substantial genetic
diversity as evidenced by the variety of phenotypes
observed post-incubation. The underrepresentation of
Naked Neck, Crested, and Feathered Legs/Shanks

phenotypes in our sample aligns with known patterns
of low frequency for Na/, Pti/, and Cr/_ adaptive
genes across African indigenous chickens (Nigussie
et al., 2010; Dahloum et al., 2016; Kindie & Tamiru,
2021). However, we observe a slightly higher
occurrence of chickens with leg feathering (14.1%)
compared to earlier studies by Fotsa et al. (2010).
This change could be motivated by the perception
that feathered leg chickens grow faster than local
chickens but retain the latter’s desirable organoleptic
qualities, which are highly valued by consumers
(Castellini et al., 2008).

Observed differences in body weight and leg
circumference across phenotypes may reflect
complex interactions between genetic makeup, sex,
and other subtle micro-environmental factors such as
in-pen competition for feed. The consistently higher
growth performance in males supports well-
documented patterns of sexual dimorphism in poultry
(Bembidé et al., 2013; Halima et al., 2007), which is
often attributed to hormonal and physiological
factors, such as higher circulating levels of
testosterone in males, which promote muscle growth
and protein synthesis (Osei-Amponsah et al., 2011).
Furthermore, males generally exhibit more efficient
feed conversion and greater appetite compared to
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females, contributing to faster weight gain (Fotsa et
al., 2011; Mustofa et al., 2021). The presence of sex-
linked growth genes and differential energy allocation
strategies may also play a role in shaping these
observed differences. The leg circumference values
observed suggest a modest skeletal development
relative to heavier indigenous breeds. When
contextualized against similar studies from Central
Africa (Bembidé et al, 2013), Algeria (Dahloum et
al., 2016), and Nigeria (Adeleke et al., 2010), the
performance of Cameroon local chickens appears
intermediate, which underscores the need for targeted
selection if productivity is to be improved.

The superior growth profile of feathered leg/shank
chickens was demonstrated between 16 and 22
weeks, corroborating the findings of Keambou ef al.
(2013) and Bembidé ef al. (2013). This may point to a
potential genetic predisposition for superior growth in
this phenotype. Yang et al. (2019) highlight the
association between phenotypic traits like leg
feathering and important economic traits like growth
rate. Candidate genes like the forelimb (PITX1) and
hindlimb (TBXS), specific transcription factors have
been identified to influence skeletal development and
growth performance in domestic chickens; however,
the mechanism remains poorly understood (Li et al.,
2020Db). It could be that the feathered leg phenotype
may instead present a marker of polygenetic traits
associated with muscle development and hormonal
regulation rather than a single candidate gene.
Meanwhile, the least evolution for the Naked Neck
chickens supports previous findings that associate
their thermoregulatory efficiency with adaptation to
harsh environments rather than growth performance
(Hako & Yoniwo, 2023a, 2023b). Furthermore, the
lack of significant differences (P>0.05) in TWG and
LCG across phenotypes may be attributed to several
factors. First, this could be due to underlying genetic
admixture and shared ancestry among local chickens
populations, where visible traits do not necessarily
reflect differences in growth-related genes (Ren et al.,
2023). Secondly, morphological features like crests or
feather patterns are often controlled by major genes
(Na, Pti, Cr, Fr) which are not directly related to the
polygenic traits governing growth in chickens
(Tixier-Boichard, 2002). Additionally, the small
sample sizes for rare phenotypes (Feathered leg,
Crested and Naked neck), uniform experimental
conditions that limit genotype-by-environment
interactions, and the potential compensatory growth
effect during the later stages may have minimized
observable performance differences. Moreover, the
uneven sex distribution within each phenotype,
despite sex being a well-known growth determinant
(Nguyen Van et al, 2020), may have further
confounded these comparisons. These findings
highlight the fact that phenotype alone may not be a
very reliable predictor of growth performance in

chickens, and alternative performance-based selection
methods can be more effective.

Cluster and Network Analysis

Our results confirm that clustering based on
performance traits can identify biologically relevant
subgroups that phenotype-based classification may
overlook. However, as Vakhrameev et al. (2023)
demonstrated in their work on divergently selected
global chickens breeds, clustering outcomes are
highly sensitive to methodological choices, including
clustering algorithms, trait combinations, and levels
of genetic admixture. Their proposed EY/W indicator
and trait-based sorting by inflection points emphasize
the importance of carefully selecting input variables
and understanding trait interactions. While our study
focused on growth-related traits (TWG and LCG), the
implications of their work suggest that integrating
broader phenotypic or genomic indicators could
further refine performance-based classification in
local chickens populations. Rosario et al. (2008)
identified three initial clusters based on body weight,
while we revealed two clusters using Silhouette
analysis before refining to four for greater biological
interpretability. The difference in clustering outcomes
could be attributed to factors such as the age of birds
analyzed and the choice of linkage methods. Rosario
et al. employed Mahalanobis distance, while our
study used Ward’s method with Euclidean distance.
These methodological differences underscore how the
structure of clustering results may vary based on
design choices, dataset properties, and the stage of
growth under investigation (Palarea - Albaladejo &
McKendrick ,2020)

With the modified four-cluster solution, Clusters 3
and 4 consistently demonstrate superior outcomes.
The similarity observed between these two clusters
and their clear distinction from Clusters 1 and 2
suggests a potential concentration of favourable
growth traits within certain groups, possibly
reflecting underlying genetic  patterns.  This
divergence is particularly meaningful because it
emerged independently of phenotypic classification,
reinforcing the value of data-driven clustering. The
consistently better performance in Clusters 3 and 4
may reflect a more efficient resource utilization,
better adaptation to the semi-intensive and intensive
system, or an inherited advantage linked to
unidentified genetic factors. Sexual dimorphism was
also in favour of cocks under performance-based
groupings who demonstrated superior TWG and LCG
irrespective of phenotypes. These results further
support the practical application of performance-
based grouping for improving productivity in local
poultry breeding programs, especially where
molecular tools are unavailable (Rosario et al. 2008).

Furthermore, these findings unlock valuable
information for local poultry breeding programs in
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Cameroon, with potential complementary effects on
growth. For instance, while Cluster 4 expressed the
highest live weight by 22 weeks, Cluster 3
demonstrated the highest TWG between 16 and 22
weeks. This may be due to the better early growth for
birds in Cluster 4 and the best late growth for subjects
in Cluster 3. This distinct performance dynamics
observed where one excels in early growth and the
other in sustained weight gain could be optimized by
selective  crossbreeding to  combine  these
complementary traits. Such an approach could
produce offspring (F1) that achieve faster initial
growth while maintaining high cumulative gains,
which is desirable for meat production. Meanwhile,
the clear divergence between Clusters 1 and 2 opens
the possibility of divergent selection pathways, where
one group may be optimized for growth and the other
for traits like egg production or resilience in low-
input systems. The significant difference in leg
circumference among sexes and clusters reinforces
the ranking of cluster performance, and their
alignment with body weight trends supports their use
as a secondary selection trait in this study. The above
patterns demonstrate that cluster-based selection can
reveal biologically meaningful subgroups, enabling
targeted selection without relying on phenotypic
appearance alone. Importantly, this strategy offers the
advantage of enhancing the likelihood of preserving
within-population genetic diversity by avoiding
uniform selection pressure on single traits or
phenotypes.

Network analysis provides additional insights into
the  relationship  between  phenotypes  and
performance-based clusters. Rather than clustering by
strict  physical appearance, phenotypes were
distributed across multiple clusters, pointing to
possible genetic exchange between groups from
historical crossbreeding. Genetic admixture is very
common among indigenous chicken populations
reared under extensive poultry systems, as indicated
by Keambou et al. (2014). Studies by Leroy et al.
(2012) and Bembidé et al. (2024) have reported high
genetic diversity and heterozygosity levels exceeding
45% in scavenging chicken populations across
Cameroon and the Central African Republic, as
determined using microsatellite markers. The Normal
and Feathered shank chicken were centrally
distributed across all four clusters. This centrality
indicates these phenotypes may serve as genetic
bridges across cluster groups, facilitating the spread
of advantageous traits through natural and planned
crossbreeding. Furthermore, their consistent presence
in Clusters 3 and 4 highlights their potential
usefulness in developing breeding lines focused on
growth optimization. From a breeding strategy
perspective, this means that selection decisions
informed by network analysis can help maintain
broad genetic diversity while strategically combining

high-growth potential from different phenotype
groups. On the other hand, peripheral phenotypes like
Naked Neck and Feathered Legs, which appeared in
fewer clusters, particularly Clusters 1 and 2, may
possess niche traits such as fast growth rate, disease
resistance or adaptation to specific ecological zones
that are also valuable depending on breeding goals.
This peripheral placement may be due their small
sample sizes in the current study, but could also point
to limited gene flow or historical underutilization by
breeders, which makes them good reservoirs for
potentially unique alleles for resilience and
adaptability. Other studies have confirmed high intra-
and inter-breed gene flow, contributing to the
adaptability and heterozygosity observed in
scavenging populations (Ren et al, 2023). By
integrating cluster-based analysis and network
structure, breeding programs can prioritize fast-
growing birds while also preserving genetic diversity.
This framework supports sustainable breeding by
promoting both productivity and conservation of
genetic resources, especially in contexts where formal
pedigree or genomic data may be lacking. In practical
terms, this dual approach empowers breeders to
design crossing schemes that balance growth
efficiency with genetic stability, thereby ensuring that
selection does not lead to narrow genetic pools or
unintended loss of traits essential for survival in low-
input systems.

Factors Influencing Growth

GLS ANCOVA assessed the influence of cluster
grouping, sex, phenotype and leg circumference gain
(LCG) on total weight gain (TWG). The model
reveals a low R2? wvalue (0.112) yet captures
statistically significant effects, which means that
although it captures meaningful patterns, a large
portion of variability remains unexplained, possibly
due to unmeasured biological or environmental
factors. Notably, phenotype did not significantly
influence TWG, suggesting that external morphology
alone is not a reliable proxy for growth performance
in adult local chickens. Feathered leg birds showed a
marginal advantage, gaining approximately 19.3 g
more than Crested and Normal birds, though this
difference was not statistically conclusive and
warrants further investigation. Clusters 3 and 4 were
the strongest predictors of higher TWG, with birds in
these birds in clusters gaining over 190 g more than
Cluster 1 (P<0.001). In contrast, Cluster 2 birds
gained about 52.9 g less than those in Cluster 1,
reinforcing  divergent growth potential across
performance-based groups. Sex was also a significant
factor, with cocks gaining an average of 42 g more
than hens, consistent with established sexual
dimorphism in poultry growth (Keambou et al., 2013;
Nguyen Van et al., 2020).
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Although Pearson correlation revealed a weak but
significant positive relationship between LCG and
TWG (r=0.31, P< 0.001), the GLS model showed a
small but significant negative effect of LCG on
TWG. This suggests a possible trade-off where birds
allocating more resources to skeletal growth and
development may do so at the expense of body mass
accumulation. These findings mirror those of
Liswaniso et al. (2024), who reported weak positive
correlations between shank circumference and body
weight and a negative, non-significant relationship
with growth rate in Chinese Sasso chickens. Such
trade-offs emphasize that structural traits like leg
circumference should  be considered as
supplementary, not primary, indicators in breeding
programs.

Conclusion

This study confirms the utility of cluster-based
selection for optimizing growth performance traits in
Cameroon local chickens, offering a potentially more
effective alternative to traditional phenotype-based
selection. Clusters 3 and 4 represent promising
candidates for targeted breeding efforts due to their
superior body weight and weight gain profile. In
parallel, network analysis revealed overlapping
relationships between clusters and phenotypes,
suggesting opportunities for strategic cross-cluster
mating to enhance productivity while maintaining
genetic diversity. To capitalize on these findings, we
recommend that local poultry breeders and
policymakers  adopt  systematic  performance
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