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The availability of genomic data, such as quantitative trait loci (QTL), has 

played a pivotal role in understanding the genetic components of various traits. 

This study aims to investigate critical and hub genes related to economic traits 

such as growth rate, body fat deposition, and feed consumption by 

investigating known QTLs by using protein-protein interaction networks (PPI) 

in chicken species. QTL coordinates for these traits were acquired through the 

Animal QTL database. Then, genes related to each QTL were obtained from 

the chicken reference genome (Gallus gallus bGalGal1.mat.broiler. GRCg7b) 

provided in the NCBI database. Critical genes related to known QTLs based on 

PPI were identified using Network Analyzer, CytoHubba, and MCODE 

applications in Cytoscape_v3.8.0 software. The results of this study showed 

452, 83, and 75 genes involved in growth rate, body fat deposition, and feed 

consumption traits, respectively. Several new hub genes related to each trait 

were found and confirmed by PPI in Cytoscape. Some novel genes for studied 

traits were EEF1D, UBE2D1, TRIP13, PSMB3, and FZR1 for growth rate, 

ARPC2, NCAN, and SUGP1 for body fat deposition and LAP3, and SGPP2 

for feed consumption. Some hub genes reported in previous studies were also 

identified in this research for growth rate (NCAPG, MED1, KPNA3, and 

EP300), body fat deposition (TULP), and feed consumption (MED9, LCORL, 

COPS3, LAP3, and TAPT1). The common important genes identified between 

the three traits that were reported in previous studies related to the traits were 

MNR2, CRYBA2, and MIR375 genes. It can be concluded that novel genes 

have molecular functions related to economically important traits. Therefore, 

newly discovered hub genes can be suggested to be used for selecting birds in 

future broiler breeding programs and basic research on functional genomics. 
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Introduction 

Recently, advancements in molecular techniques have 

made it possible to create comprehensive linkage 

maps for various species, such as chickens (Groenen 

et al., 2000). Identifying QTLs affecting economic 

traits is beneficial for breeders and geneticists who 

investigate the role of QTL. Information on effective 

QTLs help to make better breeding decisions and 

shortenings the time needed to select the superior 

birds (Wakchaure et al., 2015). Linkage 

disequilibrium between markers and important QTLs 

is necessary for QTL identification and mapping 

(Aerts et al., 2007). Several methods are available for 

identifying QTLs and estimating their effects, 

consisting of regression-based methods (Haley and 

Knott., 1992), maximum likelihood (Haley and 

Knott., 1992), and Bayesian models (Sillanpää and 

Corander, 2002). Most QTL mapping methods are 

based on backcross populations, double haploids, or 

pure lines resulting from crossing two parents, with 

two genotypes for each marker or QTL position (Zhu 

et al., 2012). Research in functional genomics 

primarily aims to identify genes responsible for 

expressing traits using various mapping techniques. 

Over the past decade, there has been significant 

progress in transitioning from genome maps to trait 

maps and ultimately discovering genes (Hu et al., 

2007). The abundance of QTL information serves as 

a valuable link between genomic data and 

phenotypes. Nevertheless, it's important to recognize 

the limited communication between mapped QTL and 

gene discovery, as pointed out by Womack (2005). 

QTL mapping plays a crucial role in pinpointing 

significant genes with polygenic traits and gaining a 
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deeper understanding of their physiological and 

biochemical functions, as highlighted by Wakchaure 

et al. (2015). 

 Recent advances in DNA-based marker 

technology have led to the identification of genomic 

regions (Hu et al., 2013). During the past years, 

bioinformatics methods have been developed to 

investigate the function and characteristics of genes. 

Network analysis is one of the approaches to check 

the function of genes and identify their importance. 

Network analysis gives us a better understanding of 

the function of genes in the presence of other genes 

(Kontou et al., 2016). The utilization of gene 

networks can be advantageous in pinpointing 

potential genes linked to QTL regions associated with 

economic traits, as noted by Suchocki et al. (2016). 

This approach was created to extract biological 

information and evaluate the functional correlation 

between gene sets, which only explain a small portion 

of phenotypic variation (Hamzi´c et al., 2015). Gene 

network analysis resulting in identifying hub genes 

could be employed as a complementary technique to 

elucidate better genome function (Verardo et al., 

2016). Additionally, the biological information 

provided by gene networks can assist in 

understanding the genetic differences among 

populations for similar traits (Verardo et al., 2016). 

Therefore, the purpose of this research is to pinpoint 

potential genes related to economic traits consisting 

of growth rate, body fat deposition, and feed 

consumption in broiler chickens through the study of 

QTLs and gene network analysis. 

 

Materials and Methods 

QTL selection 

The annotation file related to the chicken genome 

(Release 106) was downloaded from the NCBI 

website 

(https://www.ncbi.nlm.nih.gov/genome/?term=chicke

n). This file included genes’ position on 33 

chromosomes reported in chicken species. Then, QTL 

coordinates related to important traits in broiler 

chickens consisting of growth rate, body fat 

deposition, and feed consumption were obtained from 

the Animal QTL database (www.animalgenome.org). 

QTLs on the chromosomes and the characteristics of 

each QTL, including chromosome number, QTL 

position, SNPs related to each QTL, and P-value of 

each SNP were collected. 

 

SNP selection 

QTLs with significant SNPs (P-value ≤ 0.05) were 

obtained from the original file. An interval distance 

of 50 kb for each significant SNP was considered, 

which is below the LD average observed in chickens 

(Seo et al., 2018). By this interval distance, the 

identification of genes with a strong association with 

significant SNPs was possible. Finally, the 

relationship between candidate genes in the 

annotation file and QTLs was obtained using R v4.0.4 

software. For each trait, a list of significant genes (P-

value ≤ 0.05) associated with each QTL was 

identified. 

 

Ranking of genes 

Cytoscape offers a variety of applications for 

constructing protein-protein interaction (PPI) 

networks and selecting modules (Shannon et al., 

2003). It is an open-source software for visualizing 

and analyzing biological data networks (Lotia et al., 

2013). STRING, the fundamental unit of interaction 

is the functional association, a specific and productive 

functional link between two proteins, potentially 

contributing to a shared biological objective 

(Szklarczyk et al., 2015). After drawing protein-

protein interaction networks with STRING, three 

applications were used to analyze the PPI network as 

follows: Network Analyser V4.4.8 (Assenov et al., 

2008), one of the standard Cytoscape's tools for in-

depth network topology analysis, was used to identify 

the hub genes of each network based on the Degree 

(Doncheva et al., 2012). 

 CytoHubba (Chin et al., 2014) is employed for 

examining significant nodes within biological 

networks. CytoHubba offers several different 

topological analysis approaches, such as Degree, 

Edge Percolated Component (EPC), Maximum 

Neighborhood Component (MNC), Maximal Clique 

Centrality (MCC), and EcCentricity (EC) (Liu et al., 

2018). The Maximal Clique Centrality (MCC) 

algorithm has been identified as the most efficient 

technique for identifying hub nodes (Chin et al., 

2014). In PPI analysis, ten genes with top MCC 

values were selected as the hub genes. 

 Also, Molecular Complex Detection (MCODE), 

as a new clustering algorithm identifying submodules 

in large PPI networks, was used to refine clusters of 

interest for protein networks (Bader and Hogue, 

2003). The cutoff criteria used in the analysis 

included MCODE scores greater than or equal to 0.4 

and more than 3 nodes. These criteria were applied 

with the default setting of MCODE, including degree 

cutoff = 2, node score cutoff = 0.2, k-core = 2, and 

maximum depth = 100 (Yang et al., 2020).  

Moreover, the Venn diagram tool was used to 

visualize common genes between traits, which could 

be potential candidate genes with important 

biological control functions (Taheri et al., 2023). 

 

Results 

Based on current results, 3105, 157, and 181 

significant SNPs (P-value ≤ 0.05) were identified for 

growth rate, body fat deposition, and feed 

consumption traits, respectively. The list of 

significant SNPs related to each trait was presented in 

supplementary file 1. These significant SNPs were 
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associated with 455, 83, and 75 genes related to 

growth rate, body fat deposition, and feed 

consumption traits, respectively. The list of 

associated genes related to each trait was presented in 

supplementary file 2. 

 The results of the STRING application indicated 

that the PPI network of 456 genes for the growth rate 

had 375 nodes and 468 edges after applying 

appropriate filters. Each node had at least 2.5 

interacting nodes, with an average node degree of 2.5. 

The local clustering coefficient had an average value 

of 0.382, and the PPI enrichment value was 3.6e−13, 

demonstrating significant observed edges (Figure 1a). 

For body fat deposition, the PPI network of 82 genes 

had 62 nodes and 19 edges after applying filters. Each 

node had at least 0.613 interacting nodes, as indicated 

by the average node degree of 0.613. The local 

clustering coefficient had an average value of 0.309, 

and the PPI enrichment value was 4.05e−06 (Figure 

1b). Additionally, for the feed consumption trait, the 

PPI network of 83 genes was observed to have 61 

nodes and 31 edges after applying appropriate filters. 

Each node had at least 1.02 interacting nodes, with an 

average node degree of 1.02. The local clustering 

coefficient had an average value of 0.309, and the PPI 

enrichment value was 1.76e−12. (Figure 1c). 

 

 
Figure 1. Visualization of PPI network for growth rate (a), body fat deposition (b), 

 and feed consumption (c) traits 

 

Table 1. Top 10 genes for growth rate, body fat deposition, and feed consumption traits ranked by Network Analyzer 

Rank 
Growth rate Body fat deposition Feed consumption 

Genes Degree Genes Degree Genes Degree 

1 EP300 8 SUGP1 4 NCAPG 5 

2 KPNA3 6 ARPC2 3 COPS3 5 

3 UBE2C 6 IP6K1 2 LAP3 5 

4 SLC11A1 5 GMFB 2 TAPT1 5 

5 ATP7B 5 NR2C2AP 2 QDPR 4 

6 WDFY2 5 CNIH1 2 LCORL 4 

7 UBE2D1 5 TULP1 2 MED9 4 

8 VPS36 4 RFXANK 2 NT5M 3 

9 CKAP2 4 CXCR1 2 RASD1 3 

10 NEK3 4 UBA7 1 TMEM128 2 

 

 Network Analyzer results showed that the top ten 

genes based on the highest degree of growth rate, 

body fat deposition, and feed consumption traits were 

selected as the hub genes. The hub genes related to 

the mentioned traits are presented in Table 1. 

 Results of MCODE for the growth rate trait 

indicate that the highest-ranking module included 18 

nodes and achieved a score of 5.41. The second 

module included 5 nodes with a score of 5, and the 

third module consisted of 4 nodes with a score of 

3.99. For the body fat deposition trait, results show 

that the module with the highest score included 3 

nodes and a score of 3. Also, for the feed 

consumption trait, the module with the highest score 

included 5 nodes and achieved a score of 5. The 

second module included 4 nodes with a score of 3.98. 

The detailed results of the functional module analysis 

and hub genes related to studied traits are presented 

in Table 2. 
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Table 2. The hub genes for growth rate, body fat deposition, and feed consumption traits using the MCODE 

application 
Module MCODE Score Genes 

Growth rate   

1 5.41 
NCAPG, MED1, QDPR, LCORL, TAPT1, TPT1, TOP2A, UBE2D1, 

RPL23, LAP3, PSME3, EEF1D, UBE2C, ANAPC4, FZR1, PSMB3, RPL15 

2 5 DHX8, FAM32A, SNRPF, CACTIN, CASC3 

3 3.99 CIB3, SUGP1, RFXANK, NR2C2AP 

Body fat deposition     

1 3 RFXANK, SUGP1, NR2C2AP 

Feed consumption     

1 5 TAPT1, LAP3, QDPR, NCAPG, LCORL 

2 3.98 NT5M, RASD1, COPS3, MED9 
 

 The top ten genes recognized by CytoHubba, 

based on the highest MCC score for growth rate, 

body fat deposition, and feed consumption traits, 

were selected as the hub genes. The hub genes related 

to the mentioned traits are presented in Table 3. 

 

Table 3. Top 10 genes for growth rate, body fat deposition, and feed consumption traits ranked by Cyto Hubba 

application 

Rank 
Growth rate Body fat deposition Feed consumption 

Genes MCC score Genes MCC score Genes MCC score 

1 TOP2A 190 RFXANK 4 LCORL 25 

2 RPL23 175 SUGP1 3 COPS3 25 

3 ANAPC4 160 ARPC2 2 SGPP2 25 

4 UBE2C 155 CNIH1 2 RASD1 24 

5 UBE2D1 127 TULP1 2 NT5M 24 

6 PSMB3 122 IP6K1 2 TAPT1 8 

7 FZR1 68 CXCR1 2 NCAPG 7 

8 MED1 56 NR2C2AP 2 LAP3 6 

9 PSME3 55 GJD4 2 QDPR 6 

10 NCAPG 52 GMFB 1 MED9 2 

 

Finally, important genes related to studied traits 

identified by three applications of Cytoscape software 

are shown in Table 3. According to this Table, 

SUGP1 and ARPC2 were the most important genes 

related to growth rate, NCAPG and COPS3 were the 

most important genes related to body fat deposition 

and MED1 and QDPR were the most important genes 

related to feed consumption. It could also be stated 

that growth and feed consumption traits are 

considerably correlated because several hub genes in 

both traits (NCAPG, QDPR, LCORL, TAPT1, and 

LAP3) were common. Moreover, the results 

showed that some important genes, including MNR2, 

CRYBA2, and MIR375, are common in growth rate, 

body fat deposition, and feed consumption (Figure 2). 

The common genes are shown in Table 4. 

 

Table 4. Hub genes are identified for each trait by three applications and common genes between three traits 
Growth rate Body fat deposition Feed consumption Common gens 

NCAPG CACTIN SUGP1 NCAPG CDK5R2 

MED1 CASC3 ARPC2 COPS3 CFAP65 

QDPR CIB3 IP6K1 LAP3 CRYBA2 

LCORL SUGP1 GMFB TAPT1 FEV 

TAPT1 RFXANK NR2C2AP QDPR MIR1599 

TPT1 NR2C2AP CNIH1 LCORL MIR1788 

TOP2A EP300 TULP1 MED9 MIR375 

UBE2D1 KPNA3 RFXANK NT5M MNR2 

RPL23 SLC11A1 CXCR1 RASD1 TMEM154 

LAP3 ATP7B UBA7 TMEM128 TRNAV-GAC 

PSME3 DHX8 NCAN SGPP2 WNT10A 

EEF1D FAM32A GJD4   
UBE2C SNRPF    

ANAPC4 WDFY2    
FZR1 VPS36    

PSMB3 CKAP2    
TRIP13 NEK3    
RPL15        
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Figure 2. Venn diagram visualizing common genes among growth rate, body fat deposition 

 and feed consumption 

 

Discussion 

In this study, important hub genes related to growth 

rate consisting of MED1, PSME3, RPL23, RPL15, 

SNRPF, EP300, KPNA3, WDFY2, NCAPG, and 

TOP2A were identified. MED1 gene was identified 

as related to body weight in broiler chickens (Tarsani 

et al., 2019). Also, the MED1 gene has a key role in 

regulating glucose and lipid metabolism in mouse 

hepatocytes (Li et al., 2020) and mammary epithelial 

cell growth (Hasegawa et al., 2012). Xiao's research 

highlighted the significant involvement of the RPL15 

gene in the process of fat storage and conversion 

across various tissues in Nandan-Yao chicken (Xiao 

et al., 2021). Moreover, the RPL15 gene was used as 

a reference gene in the study by Meslin et al. (2015) 

related to fatty acids in the chicken genome (Meslin 

et al., 2015). The RPL23 gene is related to the growth 

of skin cells, which is required for molting in birds. In 

one study, results showed that molt in roosters 

appeared to be specific to groups of tissues, related to 

the RPL23 gene replicating extensively across tissues 

the ribosomal proteins (Charton et al., 2021). In a 

study detecting selection signatures among Brazilian, 

Sri Lankan, and Egyptian chicken populations, the 

SNRPF gene was one of the important genes under 

selection related to different growth rates in the 

mentioned populations (Walugembe et al., 2019).  

Increased expression of the WDFY2 gene has been 

linked to heightened adipogenesis in chickens 

(Fritzius and Moelling, 2008). Moreover, in a study 

by Li et al. (2021) NCAPG gene was one of the 

candidate genes that might regulate chicken bone 

growth and development (Li et al., 2021). Another 

critical gene related to growth rate was TOP2A. 

Reduction of the TOP2A gene in the liver might have 

been the result of cell death (Zhang et al., 2021). 

Moreover, the TOP2A gene is related to cell cycle 

regulation (Lee et al., 2020). TOP2A, a gene 

encoding a protein involved in chromatin remodeling, 

has been identified as a key contributor to the 

reprogramming abilities of oocytes and human 

embryonic stem cells (Assou et al., 2009). In a study 

of key genes regulating skeletal muscle development 

and growth in farm animals, the EP300 gene was one 

of the candidate genes associated with muscle growth 

(Mohammadabadi et al., 2021). Also, this gene in 

pigs could be crucial for growth and feed conversion 

(Piórkowska et al., 2019). In a GWAS study, the 

KPNA3 gene was found to be associated with 

chicken growth traits (Abdalhag et al., 2015). Also, 

this KPNA3 gene was found to be associated with 

growth traits in farm animals and was considered an 

important candidate gene for growth traits in broilers 

(Wang et al., 2022). In a study by Abdalhag et al. 

(2015), the KPNA3 gene had effects on some growth 

traits such as leg muscle weight and chest muscle 

weight in chickens (Abdalhag et al., 2015). In 

addition, PSMB3, TRIP13, and UBE2D1 were 

identified as novel genes related to growth traits in 

this study since in previous studies on broiler 

chickens and other species, the relationship of these 

genes with growth rate traits has not been reported. 

 Similarly, an important hub gene, TULP1, related 

to body fat deposition was found. In the selection 

signature analysis region study for abdominal fat 

content in chicken, the TULP1 gene was one of the 

identified genes under selection (Zhang et al., 2012). 

Moreover, some novel genes, such as ARPC2, 

NCAN, SUGP1, RFXANK, etc. found to be related 

to body fat traits in previous research on chickens and 

other species, the relationship of these genes with 

body fat traits has not been reported yet. 

 Moreover, some important genes including 

COPS3, LAP3, LCORL, MED9, NCAPG, NT5M, 



34                                                                                                                            Critical Genes to Economic Traits in Broilers 

Poultry Science Journal 2025, 13(1): 29-38 

QDPR, RASD1, SGPP2, and TAPT1 related to feed 

consumption were also identified. In a study done by 

Ye et al. (2020), it was found that the interaction 

between COPS3 and COP9 has an impact on feed 

intake and residual feed intake. LCORL represents 

one of the characteristic motifs of transcription 

factors in bone and plays a crucial part in the 

differentiation and multiplication of bone cells 

(Metzger et al., 2013). Furthermore, this gene has 

been linked to the height or length of an animal's 

body (Bai et al., 2021). In another study, it was 

discovered that LCORL was also correlated with foot 

weight in chickens (Liu et al., 2021). In a study done 

by Zhi et al. (2023), it was shown that the strong 

selection of the LCORL gene in Henan Indigenous 

chicken is related to body size and muscle 

development. It was also determined that the LCORL 

gene was associated with initial body weight and 

body size at different weeks of age, as well as carcass 

characteristics of chicken populations (Zhi et al., 

2023). Furthermore, in the F2 generation population 

from crosses between Luxi and white broiler 

chickens, LCORL was significantly related to total 

eviscerated weight (Liu et al., 2021). The inclusion of 

chickens in this range of species suggests that 

LCORL plays a crucial role in body weight traits in 

vertebrates (Liu et al., 2015). SNPs near the LCORL 

locus have been linked to organ weight in chickens 

(Dou et al., 2019), egg weight (Yi et al., 2015), and 

oviduct size (Shen et al., 2017). According to Lyu et 

al. (2017), LCORL is a critical gene determining 

body weight characteristics in vertebrates and 

potentially impacting chicken growth (Lyu et al., 

2017).  In genome-wide association analysis using 

whole-genome sequences in chickens, the MED9 

gene was identified as a related gene with feed intake 

(Ye et al., 2019). Also, in a study by Van Goor et al. 

(2015) for the identification of quantitative trait loci 

related to body temperature, body weight, breast 

yield, and digestibility in chickens under heat stress, 

the MED9 gene was one of the candidate genes (Van 

Goor et al., 2015). The NT5M gene was identified as 

one of the candidate genes associated with residual 

feed intake (Ye et al., 2019). In a study, results 

showed that NCAPG affected egg formation or 

eggshell weight in chickens (Sun et al., 2015). Yi et 

al. (2015) found that the NCAPG gene can influence 

both egg weight and body weight at the same time 

(Yi et al., 2015), and it can also affect daily feed 

consumption (Wolc et al., 2013). Barkova and 

Smaragdov (2016) conducted a study that revealed 

important links between the NCAPG gene and egg 

weight as well as shell elastic deformation (Barkova 

and Smaragdov, 2016). The NCAPG gene was shown 

to have potential roles in oviduct development (Shen 

et al., 2017). The NCAPG locus's pleiotropic impact 

might be connected to how egg weight influences 

chickens' body weight at birth, their physical form, 

and subsequent performance (Nangsuay et al., 2011). 

In a study in chicken, the NCAPG gene was 

discovered on chromosome 4 in chickens and was 

linked to the length and mass of the tibia, as well as 

the length and area of the femur and the length of the 

shank (Guo et al., 2020). Moreover, in a study by Li 

et al. (2021) NCAPG gene was one of the candidate 

genes that might regulate chicken bone growth and 

development (Li et al., 2021). The Weikard et al. 

(2010) study found a strong correlation between the 

NCAPG gene and prenatal growth in cattle (Weikard 

et al., 2010). Additionally, it has been suggested that 

this gene may enhance protein synthesis and muscle 

growth in pigs by stimulating the mTOR signaling 

pathway through arginine and NO (Yao et al., 2010). 

Also, the NCAPG gene affects multiple traits, 

including body weight (Setoguchi et al., 2009), 

residual feed intake in cattle (Widmann et al., 2015), 

and wither height in horses (Tetens et al., 2013). 

According to a study by Gu et al. (2011), the QDPR 

gene plays a significant role in chicken growth traits 

and important biological functions (Gu et al., 2011). 

Also, the QDPR has significant correlations with 

growth, shank circumference, and foot weight traits 

(Wang et al., 2016). The RASD1 gene is part of the 

Ras superfamily, is involved in regulating cell 

proliferation and differentiation, and is specifically 

stimulated by steroids and glucocorticoids (Brogan et 

al., 2001). Additionally, RASD1 was identified as the 

sole shared gene associated with residual feed intake, 

indicating that this region may be a novel QTL linked 

to residual feed intake (Ye et al., 2019). Another gene 

related to growth rate was TAPT1. One of the crucial 

candidate genes for quick growth in broilers, as 

indicated by Dou et al. (2022), is TAPT1. 

Furthermore, the TAPT1 gene showed a significant 

correlation with carcass weight and eviscerated 

weight in broilers (Liu et al., 2013). Also, this gene is 

related to localized egg number and egg weight 

(Chatterjee et al., 2008). Also, several novel genes, 

such as LAP3, SGPP2, etc. found to be related to feed 

consumption traits, the relationship of these genes 

with feed consumption traits has not been reported 

yet in previous research on chickens and other 

species. 

 Moreover, some important genes are common 

among the examined three traits such as MNR2, 

CRYBA2, and  MIR375. CRYBA2 gene is related 

to the structural integrity of the eye lens in chickens 

(Yeung et al., 2007). The MIR375 gene is a regulator 

of chicken ovary maturity (Kang et al., 2013). Also, 

MIR375 plays a role in the regulation of insulin 

sensitivity and glucose metabolism (Zhu et al., 2011). 

One of the genes being studied about chickens is 

MNR2, which impacts reproductive performance and 

the growth and development of follicles. It also plays 

a role in supporting cell transport, differentiation, and 

cell proliferation (Zhang et al., 2021). Also, the 
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MNR2 gene might affect influence the development 

of chicken comb tissue (Wang et al., 2017). 

Furthermore, some important common genes between 

the three traits have not been reported related to these 

traits in previous studies yet, such as CDK5R2, 

TMEM154, etc. 

 

Conclusion 

In the current study, some of the hub genes were 

identified by the Network Analyzer, CytoHubba, and 

MCODE applications in Cytoscape. Some of the 

important identified genes reported in previous 

research for growth rate were PSME3, MED1, 

TOP2A, RPL15, and RPL23, for body fat deposition 

was TULP1, for feed consumption were NT5M, 

COPS3, MED9, and TAPT1. Also, several new hub 

genes were found for growth rate TPT1, PSMB3, and 

EEF1D for body fat deposition RFXANK, SUGP1, 

and NCAN for feed consumption TMEM128, LAP3, 

and SGPP2. Also, the common critical genes 

identified between growth rate, body fat deposition, 

and feed consumption traits that were reported in 

previous research related to the traits of the present 

study were MNR2, CRYBA2, and MIR375 genes. 

According to the results obtained from this research, 

focusing on the rank of known important genes, as 

well as reporting new genes related to economic 

traits, would considerably help us to select the best 

animal based on their valuable genes and 

consequently improve meat production and feed 

efficiency in poultry production. 
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