Effect of Chicory Plant (Cichorium intybus L.) Extract on Performance and Blood Parameters in Broilers Exposed to Heat Stress with Emphasis on Antibacterial Properties

Taraz Z¹, Shams Shargh M², Samadi F³, Ebrahimi P⁴ & Zerehdaran S⁴

¹Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
²Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
³Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
⁴Department of Animal Science, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The antimicrobial effectiveness of different extracts of Chicory (Cichorium intybus L.) plant including methanolic, ethyl acetate, chloroformic, and aqueous extracts was evaluated by Disk Diffusion method. The ethyl acetate extract showed higher antibacterial activity against E. coli compared with others. Then, effects of different levels of ethyl acetate extract on growth performance and blood parameters of broilers subjected to high ambient temperature was investigated. The treatments were; a control diet, 3 levels of the Chicory ethyl acetate extract (150, 250, and 350 mg/kg feed) and one level of probiotic with 4 replicates of 20 broiler chicks in each. The temperature was increased to 35°C with 50% relative humidity for 5 h daily, starting from 11 d until 42 d of the experimental period. Results indicated that inclusion Chicory extract at 350 mg/kg and probiotic increased body weight gain and improved feed conversion ratio during 11-24 d and 0-42 d (P < 0.05). There were no significant differences in feed intake of broilers treated with Chicory extract and probiotic compared with control. The serum concentrations of triglyceride and very low-density lipoprotein significantly decreased in birds received Chicory extract at the levels of 250 and 350 mg/kg feed compared with the other treatments (P < 0.05). No significant difference was observed between treated groups and control for serum high-density lipoprotein and low-density lipoprotein concentrations. It seems that dietary supplementation of Chicory ethyl acetate extract at levels higher than 250 mg/kg feed has growth promoting effect which can result in improving growth performance and decreasing blood lipids of broilers exposed to heat stress condition.

Introduction

The harmful effects of heat stress on performance, health and physiology of broilers can be a cause of concern, especially in tropical regions. The microbes of gastrointestinal tract play a key role in production efficiency, enhancing immunity and the health of the bird.

Keywords

Probiotic
Heat stress
Performance
Broiler chicken
Chicory extract

Corresponding author
Zahra Taraz
zahrataraz@yahoo.com

Article history
Received: July 4, 2015
Revised: October 30, 2015
Accepted: November 16, 2015
The imbalance in the microbes of the gastrointestinal tract, by weakening of beneficial microorganisms, causes more colonies of pathogens to be formed (Lin et al., 2011). Antibiotic growth promoters improve the public performance of birds with improving bowel and strengthen beneficial microorganisms. Furthermore, they prevent the creation of some pathogenic bacteria, but their harmful effects on human health due to antibiotic resistance and residues remaining in poultry products, results in an effort to find materials that can improve animal growth without adverse effects on consumer’s health (Eckert et al., 2010).

Today, many materials have been introduced as an alternative to antibiotics such as probiotics, prebiotics and medicinal plants. Probiotics increase production efficiency by reducing the nutrients available for harmful bacteria and also reduce the production of toxic bacterial metabolites (Patterson & Burkholder, 2003). Chicory plant due to its special characteristics and ingredients is used as an herbal medicine. All parts of this plant especially roots have medicinally important compounds such as alkaloids, fructooligosaccharides, inulin (about 98%), flavonoids and variety of terpenoids (Saxena et al., 2014). Active ingredients in the herb Chicory have the property of increasing beneficial microbes (lactobacilli, bifidobacteria and butyrate-producing bacteria) and reducing pathogenic bacteria (Escherichia coli and Salmonella) in the intestines of chickens (Chow, 2002).

There are not many reports regarding the use of Chicory plant extract in broilers during heat stress. Therefore, in this study antibacterial properties of different extracts of Chicory (Cichorium intybus L.) plant was investigated and then the effects of the ethyl acetate extract as a growth-promoting additive on performance and blood parameters of broiler chickens was examined under heat stress condition.

Material and Methods
The protocol and all procedures were approved by Gonbad Kavous University, Gonbad-e-Kavous, Iran.

Preparation of extract
Chicory plant used in this experiment was collected in September 2013 from the mountains near Bojnoord, North Khorasan province, Iran. The collected plant was dried under 25°C shadow. The dried samples were grounded into 3 to 5 mm particles using a laboratory mill. Solvents (methanol, ethyl acetate, chloroform and water) were added to the powdered plant and kept for 4 to 5 days at room temperature and were filtrated through Whatman No. 1. The solvent was then removed using rotary evaporator. The extracts became viscous, dried on a water bath and then stored at 4°C.

Antibacterial activity of different solvent extracts
The sensitivity of E. Coli to different Cichorium intybus plant extracts was determined accordance with the Disc Diffusion method by Mueller Hinton agar medium plate (Merck Co., Germany). Antimicrobial discs of Gentamicin used as positive control for comparing with different Chicory extracts. The antimicrobial activity was evaluated by measuring the inhibition zone at 50 and 100 μg/mL.

Experimental design
An experiment was conducted as a completely randomized design with 5 dietary treatments and 4 replicates of twenty broiler chicks (mixed sex) in each pen. For preparing dietary treatments, a basal diet was formulated to meet or exceed the nutrient recommendations for broiler chickens according to Ross 308 requirements (Avigen, 2009; Table 1). Then, five dietary treatments were prepared by addition of 4 levels (0, 150, 250, and 350 mg/kg feed) of the ethyl acetate Chicory plant extract and 1 level of probiotic Primalac to the basal diet. The ethyl acetate extract and probiotic were first mixed very well with corn and then gradually was added to the basal diet. Probiotic Primalac (StarLabs Inc., Clarksdale, MO, USA) contained a total of 2×10⁸ colony forming unit of L. acidophilus, L. casei, E. faecium and B. bifidum.

Birds had free access to feed and water throughout the experiment. Body weight gain, feed intake, and feed conversion ratio were determined during each period of the experiment. Birds were reared on litter floor pen and a continuous lighting program with 23 h light and 1 h darkness was used. The temperature at 1-10 days was kept according to the Ross 308 manual recommendations. Birds were exposed daily to heat stress for 5 hrs at 35°C and 50% relative humidity during 11 days of age up to the end experiment.
Blood sampling
At 35 d of the age, after 6 h of fasting, two male chickens from each replicate were selected. Blood samples were collected from the brachial vein and Serum was obtained by centrifugation of the coagulated blood at 3000 × g for 10 min. The sera samples kept in the deep freezer until analysis for determining total protein, albumin and globulin (Doumas et al., 1981), cholesterol, High-density lipoprotein (HDL) (Wybenga et al., 1970) and triglyceride (Neri & Frings, 1973). Very low-density lipoprotein (VLDL) was determined by dividing triglyceride concentration to five. Low-density lipoprotein (LDL) calculated by subtracting HDL and VLDL from cholesterol concentration (Warnick et al., 1990).

Statistical analysis
Analysis of variance was performed using the GLM procedure with SAS software (SAS, 2003) based on a completely randomized design. Significant differences among treatment means were determined by Duncan’s multiple range test at a 5% probability level.

Table 1. Ingredients and nutrient composition of the basal diet

<table>
<thead>
<tr>
<th>Ingredient (%)</th>
<th>(1-10 d)</th>
<th>(11-24 d)</th>
<th>(25-42 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>55.88</td>
<td>58.96</td>
<td>62.67</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>37.16</td>
<td>34.06</td>
<td>29.73</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>2.22</td>
<td>2.95</td>
<td>3.75</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.31</td>
<td>1.07</td>
<td>1.06</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>1.79</td>
<td>1.55</td>
<td>1.49</td>
</tr>
<tr>
<td>Salt</td>
<td>0.50</td>
<td>0.50</td>
<td>0.43</td>
</tr>
<tr>
<td>Vitamin premix</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Mineral premix</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.35</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>L-Lysin</td>
<td>0.29</td>
<td>0.14</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Nutrient composition
ME (Kcal/kg) | 2900 | 3000 | 3100 |
CP (g/kg) | 21.1 | 20 | 18.41 |
Ca (%) | 1.00 | 0.86 | 0.82 |
Available P (%) | 0.48 | 0.43 | 0.41 |
Lysine (%) | 1.37 | 1.18 | 1.05 |
Methionine | 0.68 | 0.57 | 0.52 |
Methionine + Cystine (%) | 1.02 | 0.90 | 0.83 |
Sodium (%) | 0.21 | 0.21 | 0.19 |

1Each Kg of vitamin premix contained: vitamin A, 3,600,000 IU; vitamin D3, 800,000 IU; vitamin E, 7.2 g; vitamin K3, 0.8 g; thiamine, 0.72 g; riboflavin, 3.3 g; pantothenic acid, 4 g; vitamin B6, 1.2 g; vitamin B12, 6 mg; niacin, 12 g; biotin, 40 mg; folic acid, 0.4 g; choline chloride, 100 g; antioxidant, 40 g.

2Each Kg of mineral premix contained: manganese, 40 g; zinc, 40 g; iron, 20 g; copper, 4 g; iodine, 0.4 g; selenium, 80 mg.

Results
The results of the antibacterial effect of Chicory extracts are shown in Table 2. All extracts showed good antibacterial activity against E. coli but the greatest inhibition was seen on the ethyl acetate extract. The inhibition zone in ethyl acetate extract was significantly higher than the other extracts at both concentrations of 50 (7.4 mm) and 100 μg/mL (15.2 mm) (P < 0.05).

The effects of different levels of Chicory ethyl acetate extract and probiotic on the body weight gain, feed intake and feed conversion ratio are shown in Table 3. There was no significant difference between Body weight gain, feed intake and feed conversion ratio in birds received different dietary treatments at 1-10 d of age.

Table 2. Antibacterial activity of plant extracts of Chicory

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Zone of inhibition against E.Coli (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 μg/mL concentration</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5.4c</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>7.4b</td>
</tr>
<tr>
<td>Methanol</td>
<td>6.2bc</td>
</tr>
<tr>
<td>Water</td>
<td>3.7d</td>
</tr>
<tr>
<td>Gentamicin1</td>
<td>10.5a</td>
</tr>
<tr>
<td>SEM2</td>
<td>0.37</td>
</tr>
</tbody>
</table>

The positive control was Gentamicin; SEM Standard error of means.
Means within the same column without common letters differ significantly (P < 0.05).
During 11 to 24 d of age, birds fed diets containing 350 mg/kg Chicory extract or probiotic had greater body weight gain (P < 0.05) than birds fed other diets. However, no significant difference was found between control diet with 150 mg/kg and 250 mg/kg Chicory extract. There was no significant difference between dietary treatments for feed intake (g) at 11-24 d. Birds fed diets containing 350 mg/kg Chicory extract or probiotic had significantly better feed conversion ratio than those birds fed 150 mg/kg Chicory extract (P < 0.05).

The highest body weight gain belonged to probiotic treatment that had a significant difference with 150 mg/kg Chicory extract and control treatments at 25-42 d (P < 0.05). However, there was no significant difference between different levels of Chicory treatments for body weight gain during this period. Birds fed diets containing probiotic or 250 mg/kg Chicory extract had significantly higher feed intake than those birds fed control and 150 mg/kg Chicory extract (P < 0.05). No significant difference was found between treatments for feed conversion ratio during this period.

For the overall experimental period (0-42 d), there was no significant difference between different levels of Chicory extract for body weight gain; Although it was improved by increasing amounts of Chicory extract. The highest body weight gain was related to birds fed probiotic. Neither Chicory extract nor probiotic had a significant effect on feed intake during this period. Birds fed 350 mg/kg Chicory extract or probiotic had significantly better feed conversion ratio than those birds fed control or 150 mg/kg Chicory extract (P < 0.05).

Table 3. The effect of feeding Chicory extract on performance parameters of broilers

<table>
<thead>
<tr>
<th>Item</th>
<th>Control</th>
<th>Chicory extract (mg/kg)</th>
<th>Probiotic</th>
<th>SEM¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>0-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>117</td>
<td>115</td>
<td>119</td>
<td>129</td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td>198</td>
<td>195</td>
<td>190</td>
<td>185</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>1.70</td>
<td>1.82</td>
<td>1.59</td>
<td>1.44</td>
</tr>
<tr>
<td>11-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>821b</td>
<td>820b</td>
<td>835ab</td>
<td>902a</td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td>1469</td>
<td>1476</td>
<td>1494</td>
<td>1542</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>1.79ab</td>
<td>1.80a</td>
<td>1.79ab</td>
<td>1.71b</td>
</tr>
<tr>
<td>25-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>1272b</td>
<td>1353b</td>
<td>1474ab</td>
<td>1416ab</td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td>2505b</td>
<td>2665b</td>
<td>2874a</td>
<td>2719ab</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>1.97a</td>
<td>1.97a</td>
<td>1.95ab</td>
<td>1.92b</td>
</tr>
<tr>
<td>0-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>2210b</td>
<td>2292b</td>
<td>2430ab</td>
<td>2449ab</td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td>4172</td>
<td>4336</td>
<td>4558</td>
<td>4446</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>1.89b</td>
<td>1.89b</td>
<td>1.87ab</td>
<td>1.81b</td>
</tr>
</tbody>
</table>

¹Standard error of means. abMeans within the same row without common letters differ significantly (P < 0.05).

Table 4. The effect of feeding Chicory extract on blood serum components in broilers at 35 d of age

<table>
<thead>
<tr>
<th>Serum components</th>
<th>Control</th>
<th>Chicory extract (mg/kg)</th>
<th>Probiotic</th>
<th>SEM²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>Total protein (g/dL)</td>
<td>3.12</td>
<td>3.24</td>
<td>3.16</td>
<td>3.25</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>1.29</td>
<td>1.47</td>
<td>1.45</td>
<td>1.51</td>
</tr>
<tr>
<td>Globulin (g/dL)</td>
<td>1.83</td>
<td>1.77</td>
<td>1.71</td>
<td>1.74</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>95.90a</td>
<td>86.37ab</td>
<td>79.22b</td>
<td>69.30b</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>121.70ab</td>
<td>128.85b</td>
<td>118.62ab</td>
<td>115.21b</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>37.60</td>
<td>49.57</td>
<td>37.78</td>
<td>38.35</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>65.00</td>
<td>62.00</td>
<td>65.00</td>
<td>63.00</td>
</tr>
<tr>
<td>VLDL(mg/dL)</td>
<td>19.10a</td>
<td>17.28ab</td>
<td>15.84b</td>
<td>13.86b</td>
</tr>
</tbody>
</table>

²Standard error of means. abMeans within the same row without common letters differ significantly (P < 0.05).

The effect of feeding Chicory plant extract and probiotic on some serum components in broilers at 35 d of age are shown in Table 4. Broilers received 250 and 350 mg/kg Chicory extract had significantly lower serum triglyceride, cholesterol and VLDL.
concentrations than other treatments. These amounts were decreased by elevating the levels of Chicory plant extract. There was no significant difference between broilers fed probiotic and control treatment. No significant effect was observed in serum total protein, albumin, globulin, HDL and LDL concentration of treated groups and control (P < 0.05).

Discussion
There are some components in the extracts of Chicory such as flavonoids, phenolic compounds and alkaloids that have antimicrobial properties (Saxena et al., 2014). The antimicrobial and antioxidant effects of phenolic compounds have been reported by Akbarian et al. (2011) and Viveros et al. (2011). It has been reported that ethyl acetate fraction showed more strong activity against E. coli than chloroformic and methanolic extracts (Petrovic et al., 2004; Mehmoond et al., 2012). The hexane and ethyl acetate root extracts of Chicory showed a greater zone of inhibition than chloroformic, petroleum ether and water extracts on E. coli (Nandagopal et al., 2007). Flamini et al. (2001) and Dendougui et al. (2006) showed that polar compounds in the Chicory plant can be dissolved in polar solvents. The higher antimicrobial property of ethyl acetate extract may be related to this fact that flavonoids and phenols which are polar and semi-polar compounds can be dissolved in organic solvents such as ethyl acetate and chloroform (Ceksteryte et al., 2007). Plant extracts in poultry diets can play an important role in improving animal performance by two mechanisms including endogenous enzyme stimulation and regulation of intestinal microflora balance (Deans and Waterman, 1993). Shapiro and Guggenheim, (1995) and Stiles et al. (1995) reported that terpenes and phenols propane have lipophilic properties and are able to penetrate the bacterial cell membrane and reach the inner membrane and are capable of disrupting the enzymatic activity of bacteria.

In agreement with our results, da Silva et al. (2011), Safamehr et al. (2013) and Saeed et al. (2015) reported better body weight gain in broilers consumed Chicory extract. The improvement in body weight gain may be attributed to better mucosal growth, villus height and width, crypt depth and ratio of villus height to crypt depth, which might have resulted in increased absorption of nutrients (Zyl et al., 2010; Awad et al., 2011). It is expected that Chicory extract is more effective in improving broilers performance expose to heat stress when physiological and biochemical metabolites change. Reducing feed intake and lack of nutrient efficiency occurred in heat stress conditions (Cooper & Washburn, 1998). Birds consume energy to cool down body during heat stress. This energy has a significant impact on their performance and reduces the production indexes (Tuzcu et al., 2008). No significant difference was observed for feed intake between the birds received Chicory extract during the whole period of the experiment. This is in accordance with findings of others (Liu et al., 2011; Elrayeh and Yildiz, 2012; Saeed et al., 2015) who reported that Chicory extract did not affect feed intake. On the contrary, Behboud et al. (2011) and Safamehr et al. (2013) reported a significant increase in feed intake in birds that consumed Chicory extract.

Better feed conversion ratio in birds given Chicory ethyl acetate extract may probably be due to its complex carbohydrates such as oligofructose and oligosaccharides which might have resulted in efficient meat production (Park & Park, 2012), an improvement in digestibility of nutrients and reduction in pathogenic microbes (Anderson et al., 2000). These findings are in agreement with the results of da Silva et al. (2011) and Saeed et al. (2015), however, the findings of Liu et al. (2011) and Elrayeh and Yildiz (2012) were different, in which they showed that feed conversion ratio of broilers treated with Chicory was not improved.

Plant extracts can stimulate secretions in the small intestinal, liver and pancreas, and increase the rate of digestion (Khajuria et al., 2002). Brenes and Roura (2010) reported that plant extracts may stimulate crypt cell proliferation. The Compounds derived from medicinal plant of Chicory such as inulin can remove pathogenic microbes and replace them with beneficial bacteria and improve the performance of poultry (Biggs et al., 2007). The final product of fermentation of inulin and oligofructose are short-chain fatty acids (SCFA) such as acetate, propionate and butyrate (Blottiere et al., 1999). Butyrate production increase microvilli height and absorption of nutrients in the digestive system and improve the growth performance of broiler chickens (Van Leeuwen et al., 2005). Many studies have confirmed the beneficial effects of probiotics on performance and the
microbial population of the gastrointestinal tract and serum parameters in broiler chickens (Lin et al., 2011).

Our results on cholesterol are consistent with Velasco et al. (2010) and Saeed et al. (2015). The decrease in blood cholesterol level might be due to the properties of Chicory extract to stimulate lactic acid producing bacteria and secreting the hydrolyase enzyme (Hinton et al., 2000) that converts bile salts into deconjugated bile acids and reduced serum cholesterol level (Safamehr et al., 2013). Chicory inulin reduces serum triglycerides and lipoprotein levels by reducing fatty acid synthesis (Williams, 1999).

Conclusion
Ethyl acetate Chicory extract had more antibacterial activity and more effective properties against E.coli compared to other Chicory extracts. Supplementation of Chicory ethyl acetate extract at the level of 350 mg/kg has growth promoting effect and improves growth performance and decreases blood lipids in broilers exposed to heat stress.

Acknowledgement
The authors would like to thank Gorgan University of Agricultural Sciences and Natural Recources, Gonbad Kavous University and Golestan University for the financial and facilities supports.

References
Avigen. 2009. Ross 308 broiler nutrition specifications. [Link]
Behboud J, Ali R & Elmira H. 2011. Comparative effect of Chicory (Cichorium intybus L.) and Nigella sativa extract with an antibiotic on different parameters of broiler chickens. Journal of Applied Environmental and Biological Sciences, 1: 525-528. [Link]

Flamini G, Antognoli E & Morelli I. 2001. Two flavonoids and other compounds from the aerial parts of Centaurea baccatea from Italy. Phytochemistry, 57: 559-564. [Link]

Lin SY, Hung ATY & Lu JJ. 2011. Effects of supplement with different level of Bacillus coagulans as probiotic on growth performance and intestinal microflora populations of broiler chickens. Journal of Animal and Veterinary Advances, 10: 111-114. [Link]

Velasco S, Ortiz LT, Alzueta C, Rebole A, Trevino J & Rodriguez ML. 2010. Effect of inulin supplementation and dietary fat source on performance, blood serum...
metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poultry Science, 89: 1651-1662. [Link]

Zyl ZV. 2010. Adding inulin to feed, obtained from chicory, improves villi properties in the intestines of broilers. Poultry Magazine, 28: 35-37. [Link]